What Can We Learn From Cape Town’s Water Crisis?

The following article was contributed by Billy Babis.

Earlier this year, Cape Town, a port city in South Africa, prepared for a full depletion of its water resources amidst the driest 3-year span on record. The threat of ”Day Zero” —  the day when the city would officially have cut off running water — has subsided for now, but the long-term threat remains. And though Cape Town’s crisis is local, it exemplifies a problem several regions across the globe may soon have to address.

 

Current situation in Cape Town

In addition to being part of Cape Town’s driest 3-year span on record, 2017 was the city’s driest single year since 1933. With a population that has nearly doubled to 3.74 million in the past 25 years, water consumption has increased as the supply dwindles.

In January of this year, the city of Cape Town made an emergency announcement that Day Zero would land in mid-April and began enforcing restrictions and regulations. Starting on February 1st, the Cape Town government put emergency water regulations into effect, increasing the cost of water to 5-8 times its previous rate and placing a suggested 50 liter per person per day cap on water use. For context, the average American uses approximately 300-380 liters of water per day. And while Cape Town residents continue to use 80 million liters more than the city’s goal of 450 million liters per day, these regulations and increased costs have made progress. Water consumption decreased enough that Day Zero has now been postponed until 2019, as the rainy season (July-August) is expected to partially replenish the reservoirs.

Cape Town’s water consumption decreased largely due to its increased cost. The municipality also restricted agricultural use of water, which usually makes up just under half of total consumption. These restrictions are worsening Cape Town’s already struggling agricultural sector; which in this 3-year drought has slashed 37,000 jobs and lost R14 billion (US$1.17 billion), contributing to inflated food prices that shoved 50,000 people below the poverty line.

On the innovation side, the city has made major investments in infrastructure to increase water availability: 3 desalination plants, 3 aquifer abstraction facilities, and 1 waste-water recycling project are currently underway to ultimately increase Cape Town’s water availability by almost 300 million liters per day.

Did climate change cause the water crisis?

Severe droughts have plagued subtropical regions like Cape Town long before human-caused climate change. Thus, it’s difficult to conclude that climate change directly caused the Cape Town water crisis. However, the International Panel on Climate Change (IPCC) continues to find evidence suggesting that climate change has caused drought in certain regions and will cause longer, more frequent droughts over the next century.

Drought can either be meteorological (abnormally limited rainfall), agricultural (abnormally dry soil, excess evaporation), or hydrological (limited stream-water). While each of these problems are interrelated, they have varying impacts on drought in different regions. Meteorological drought is often the most important, and this is certainly the case in Cape Town.

Meteorological drought occurs naturally in Cape Town and the other few regions of the world with a “Mediterranean” climate: Central California, central Chile, northern Africa and southern Europe, southwestern Australia, and the greater Cape Town area have dry summers and variably rainy winters. Due to global weather oscillations like El Nino, the total rainfall in winter varies dramatically. A given winter is usually either very rainy or very dry. But as long as repeated and prolonged periods of drought don’t strike, these regions can prepare for dry seasons by storing water from previous wet seasons.

But climate change threatens to jeopardize this. With “robust evidence and high agreement,” the IPCC concluded that while tropical regions will receive more precipitation this century, subtropical dry regions (like these Mediterranean climates) will receive less. In fact, warm, rising air near the equator ultimately settles and cools in these subtropical regions, creating deserts and droughts. Therefore, increasing equatorial heat and rain (as global warming promises to do) will likely lead to drier subtropical conditions and more frequent meteorological drought.  

But the IPCC also expects these Mediterranean climates to experience more frequent agricultural drought, (IPCC 5) largely due to growing human populations. In addition, renewable surface water and groundwater will decrease and hydrologic drought will likely occur more frequently, due in large part to the increasing population and resulting consumption.

 

What we can learn from this crisis

Earlier this year, many Capetonians feared a total catastrophe: running out of water. Wealthier citizens might have been able to pay for imported water or outbound flights, but poorer communities would have been left in a much more dire situation. International aid likely would have been necessary to avoid any fatal consequences.

The city seems to have averted that for now, but not without cost. The drought has caused immense strain on the agricultural economy that “will take years to work out of the system,” explains Beatrice Conradie, Professor of Economics and Social Sciences at University of Cape Town. “Primary producers are likely to act more conservatively as a result and this will make them less inclined to invest and create jobs. The unemployed will migrate to cities where they will put additional pressure on already strained infrastructure.”

And while Cape Town’s water infrastructure projects — desalination plants, aquifer abstraction facilities, and waste-water recycling projects — provided some immediate and prospective relief, they will not always be an option for every region. Desalination plants are very expensive and energy intensive (thus, climate change contributors), and pollute the local ocean ecosystem by releasing the brine remnants of desalination back into the water. Conradie raises further concerns about unregulated well-drilling in response to surface water restrictions. Regulated and unregulated over-abstraction from aquifers commonly leads to salt-water intrusion, permanently contaminating that fresh water and killing wetland wildlife. These are the best solutions available, and none of them are sustainable.

“Cape Town is really a wake-up call for other cities around the world,” shares NASA’s senior water scientist, Jay Famiglietti. “We have huge challenges ahead of us if we want to avert future day zeros in other cities around the world.”

Just as Capetonians failed to heed the cries of their government before reaching crisis-mode, global citizens are adjusting very slowly to the climate change cries of scientists and governments around the globe. But Cape Town’s response offers some valuable sociological lessons on sustainability. One is that behavioral changes can swing abruptly on a mass scale. Once a sufficient sense of urgency struck the people of Cape Town in early February (see figure below), the conservation movement gained a critical mass. Community members exponentially fed off each others’ hope.

But the role of governance proved indispensable. While Cape Town had long tried to inform the public of the water shortages, residents didn’t adjust their consumption until the government made the emergency announcement on January 17th and began enforcing drastic regulations and fees.

As Cape Town’s sustainability efforts demonstrate, addressing climate change is a social problem as much as a technical problem. Regardless of technological innovations, understanding human behavioral habits will be crucial in propelling necessary changes. As such, sociologists will grow just as important as climate scientists or chemical engineers in leading change.

Cape Town’s main focus over the past few months has been discovering the best ways to make behavioral nudges to its citizens on a mass scale to reduce water consumption. This entailed research partnerships with University of Cape Town’s sociology departments and the Environmental Policy Research Unit (EPRU). The principle of reciprocity reigned true – that people are more likely to contribute to the public good if they see others doing it – and enhancing this effect on a global scale will grow increasingly important as we attempt to mitigate and adapt to environmental threats in this century.

With or without a changing climate, though, water scarcity will become an increasingly urgent issue for humanity’s growing population. Population growth continues to catapult our ecological footprint and increasingly threaten the ability of future, presumably larger, generations to flourish. Amidst their environmental challenge, the people of Cape Town demonstrated the importance of effective governance and collaboration. As more subtropical regions begin to suffer from drought and water shortages, learning from the failures and successes of Cape Town’s 2018 crisis will help avoid disaster.

Can Global Warming Stay Below 1.5 Degrees? Views Differ Among Climate Scientists

The Paris Climate Agreement seeks to keep global warming well below 2 degrees Celsius relative to pre-industrial temperatures. In the best case scenario, warming would go no further than 1.5 degrees.

Many scientists see this as an impossible goal. A recent study by Peter Cox et al. postulates that, given a twofold increase in atmospheric carbon dioxide, there is only a 3% chance of keeping warming below 1.5 degrees.

But a study by Richard Miller et al. provides more reason for hope. The Miller report concludes that the 1.5 degree limit is still physically feasible, if only narrowly. It also provides an updated “carbon budget”—a projection of how much more carbon dioxide we can emit without breaking the 1.5 degree limit.

Dr. Joeri Rogelj, a climate scientist and research scholar with the Energy Program of the International Institute for Applied Systems Analysis, co-authored the Miller report. For Rogelj, the updated carbon budget is not the paper’s most important point. “Our paper shows to decision makers the importance of anticipating new and updated scientific knowledge,” he says.

Projected “carbon budgets” are rough estimates based on limited observations. These projections need to be continually updated as more data becomes available. Fortunately, the Paris Agreement calls for countries to periodically update their emission reduction pledges based on new estimates. Rogelj is hopeful “that this paper has put the necessity for a strong [updating] process on the radar of delegates.”

For scientists who have dismissed the 1.5 degree limit as impossible, the updating process might seem pointless. But Rogelj stresses that his team looked only at geophysical limitations, not political ones. Their report assumes that countries will agree to a zero emissions commitment—a much more ambitious scenario than other researchers have considered.

There is a misconception, Rogelj says, that the report claims to have found an inaccuracy in the Earth system models (ESMs) that are used to estimate human-driven warming. “We are using precisely those models to estimate the carbon budget from today onward,” Rogelj explains.

The problem is not the models, but rather the data fed into them. These simulations are often run using inexact projections of CO2 emissions. Over time, small discrepancies accumulate and are reflected in the warming predictions that the models make.

Given information about current CO2 emissions, however, ESMs make temperature predictions that are “quite accurate.” And when they are provided with an ambitious future scenario for emissions reduction, the models indicate that it is possible for global temperature increases to remain below 1.5 degrees.

So what would such a scenario look like? First off, emissions have to fall to zero. At the same time, the carbon budget needs to be continually reevaluated, and strategy changes must be based on the updated budget. For example, if emissions fall to zero but we’ve surpassed our carbon budget, then we’ll need to focus on making our emissions negative—in other words, on carbon dioxide removal.

Rogelj names two major processes for carbon dioxide removal: reforestation and bio-energy with carbon capture and storage. Some negative emissions processes, such as reforestation, provide benefits beyond carbon capture, while others may have undesired side effects.

But Rogelj is quick to add that these negative emissions technologies are not “silver bullets.” It’s too soon to know if carbon dioxide removal at a global scale will actually be necessary—we’ll have to get to zero emissions before we can tell. But such technologies could also help us reach zero in the first place.

What else will get us to zero emissions? According to Rogelj, we need “a strong emphasis on energy efficiency, combined with an electrification of end-use sectors like transport and building and a shift away from fossil fuels.” This will require a major shift in investment patterns. We want to avoid “locking into carbon dioxide-intensive infrastructure” that would saddle future generations with a dependency on non-renewable energy, he explains.

Rogelj stresses that his team’s findings are based only on geophysical data. Societal factors are a different matter: It is up to individual countries to decide where reducing emissions falls on their list of priorities.

However, the stipulation in the Paris Climate Agreement that countries periodically update their pledges is a source of optimism. Rogelj, for his part, is cautiously hopeful: “Looking at real world dynamics in terms of costs of renewables and energy storage, I personally think there is room for pledges to be strengthened over the coming five to ten years as countries better understand what is possible and how these pledges can align with other priorities.”

But not everyone in the scientific community shares the hopeful tone struck by Rogelj and his team. An article by the MIT Technology Review outlines “the five most worrisome climate developments” from 2017.

To start, global emissions are on the rise, up 2% from 2016. While the prior few years had seen a relative flattening in emissions, this more recent data shattered hopes that the trend would continue. On top of that, scientists are finding that observable climate trends line up best with “worst-case scenario” models of global warming—that is, global temperatures could rise five degrees in the next century.

And the arctic is melting much faster than scientists predicted. A recent report by the U.S. National Oceanic and Atmospheric Administration (NOAA) declared “that the North Pole had reached a ‘new normal,’ with no sign of returning to a ‘reliably frozen region.’”

Melting glaciers and sea ice trigger a whole new set of problems. The disappearing ice will cause sea levels to rise, and the “reflective white snow and ice [will] turn into heat-absorbing dark-blue water…[meaning] the Arctic will send less heat back into space, which leads to more warming, more melting, and more sea-level rise still.”

And finally, natural disasters are becoming increasingly ferocious as weather patterns mutate. The United States saw this first-hand, with massive wildfires on the west coast—including the largest ever in California’s history—and a string of hurricanes that ravaged the Virgin Islands, Puerto Rico, and many southern states.

These consequences of global warming are beginning to affect areas of social interest beyond the environment. The 2017 Atlantic hurricane season, for example, has been a massive economic burden, wracking up more than $200 billion in damages.

In Rogelj’s words, “Right now we really need to find ways to achieve multiple societal objectives, to find policies and measures and options that allow us to achieve those together.” As governments come to see how climate protection “can align with other priorities like reducing air pollution, and providing clean water and reliable energy,” we have reason to hope that it may become a higher and higher priority.

As Acidification Increases, Ocean Biodiversity May Decline

Dubbed “the evil twin of global warming,” ocean acidification is a growing crisis that poses a threat to both water-dwelling species and human communities that rely on the ocean for food and livelihood.

Since pre-industrial times, the ocean’s pH has dropped from 8.2 to 8.1—a change that may seem insignificant, but actually represents a 30 percent increase in acidity. As the threat continues to mount, the German research project  BIOACID (Biological Impacts of Ocean Acidification) seeks to provide a better understanding of the phenomenon by studying its effects around the world.

BIOACID began in 2009, and since that time, over 250 German researchers  have contributed more than 580 publications to the scientific discourse on the effects of acidification and how the  oceans are changing.

The organization recently released a report that synthesizes their most notable findings for climate negotiators and decision makers. Their work explores “how different marine species respond to ocean acidification, how these reactions impact the food web as well as material cycles and energy turnover in the ocean, and what consequences these changes have for economy and society.”

Field research for the project has spanned multiple oceans, where key species and communities have been studied under natural conditions. In the laboratory, researchers have also been able to test for coming changes by exposing organisms to simulated future conditions.

Their results indicate that acidification is only one part of a larger problem. While organisms might be capable of adapting to the shift in pH, acidification is typically accompanied by other environmental stressors that make adaptation all the more difficult.

In some cases, marine life that had been able to withstand acidification by itself could not tolerate the additional stress of increased water temperatures, researchers found. Other factors like pollution and eutrophication—an excess of nutrients—compounded the harm.

Further, rising water temperatures are forcing many species to abandon part or all of their original habitats, wreaking additional havoc on ecosystems. And a 1.2 degree increase in global temperature—which is significantly under the 2 degree limit set in the Paris Climate Agreements—is expected to kill at least half of the world’s tropical coral reefs.

Acidification itself is a multipronged threat. When carbon dioxide is absorbed by the ocean, a series of chemical reactions take place. These reactions have two important outcomes: acid levels increase and the compound carbonate is transformed into bicarbonate. Both of these results have widespread effects on the organisms who make their homes in our oceans.

Increased acidity has a particularly harmful effect on organisms in their early life stages, such as fish larvae. This means, among other things, the depletion of fish stocks—a cornerstone of the economy as well as diet in many human communities. Researchers “have found that both [acidification and warming] work synergistically, especially on the most sensitive early life stages of [fish] as well as embryo and larval survival.”

Many species are harmed as well by the falling levels of carbonate, which is an essential building block for organisms like coral, mussels, and some plankton. Like all calcifying corals, the cold-water coral species Lophelia pertusa builds its skeleton from calcium carbonate. Some research suggests that acidification threatens both to slow its growth and to corrode the dead branches that are no longer protected by organic matter.

As a “reef engineer,” Lophelia is home to countless species; as it suffers, so will they. The BIOACID report warns: “[T]o definitely preserve the magnificent oases of biodiversity founded by Lophelia pertusa, effects of climate change need to be minimised even now–while science continues to investigate this complex marine ecosystem.”

Even those organisms not directly affected by acidification may find themselves in trouble as their ecosystems are thrown out of balance. Small changes at the bottom of the food web, for example, may have big effects at higher trophic levels. In the Artic, Limacina helicina—a tiny swimming snail or “sea butterfly—is a major source of food for many marine animals. The polar cod species Boreogadus saida, which feeds on Limacina, is a key food source for larger fish, birds, and mammals such as whales and seals.

As acidification increases, research suggests that Limacina’s nutrional value will decrease as its metabolism and shell growth are affected; its numbers, too, will likely drop. With the disappearance of this prey, the polar cod will likely suffer. Diminishing cod populations will in turn affect the many predators who feed on them.

Even where acidification stands to benefit a particular species, the overall impact on the ecosystem can be negative. In the Baltic Sea, BIOACID scientists have found that Nodularia spumigena, a species of cyanobacteria, “manages perfectly with water temperatures above 16 degrees Celsius and elevated carbon dioxide concentrations–whereas other organisms already reach their limits at less warming.”

Nodularia becomes more productive under acidified conditions, producing bacterial “blooms” that can extend upwards of 60,000 square kilometers in the Baltic Sea. These blooms block light from other organisms, and as dead bacteria degrade near the ocean floor they take up precious oxygen. The cells also release toxins that are harmful to marine animals and humans alike.

Ultimately biodiversity, “a basic requirement for ecosystem functioning and ultimately even human wellbeing,” will be lost. Damage to tropical coral reefs, which are home to one quarter of all marine species, could drastically reduce the ocean’s biodiversity. And as biodiversity decreases, an ecosystem becomes more fragile: ecological functions that were once performed by several different species become entirely dependent on only one.

And the diversity of marine ecosystems is not the only thing at stake. Currently, the ocean plays a major mitigating role in global warming, absorbing around 30 percent of the carbon dioxide emitted by humans. It also absorbs over 90 percent of the heat produced by the greenhouse effect. But as acidification continues, the ocean will take up less and less carbon dioxide—meaning we may see an increase in the rate of global warming.

The ocean controls carbon dioxide uptake in part through a biological mechanism known as the carbon pump. Normally, phytoplankton near the ocean’s surface take up carbon dioxide and then sink towards the ocean floor. This process lowers surface carbon dioxide concentrations, facilitating its uptake from the atmosphere.

But acidification weakens this biological carbon pump. Researchers have found that acidified conditions favor smaller types of phytoplankton, which sink more slowly. In addition, heavier calcifying plankton—which typically propel the pump by sinking more quickly—will have increasing difficulty forming their weighty calcium carbonate shells. As the pump’s efficiency decreases, so will the uptake of carbon dioxide from the air.

The BIOACID report stresses that the risks of acidification remain largely uncertain. However, despite — or perhaps because of — this, society must tread cautiously with care of the oceans. The report explains, “Following the precautionary principle is the best way to act when considering potential risks to the environment and humankind, including future generations.”

As CO2 Levels Rise, Scientists Question Best- and Worst-Case Scenarios of Climate Change

Scientists know that the planet is warming, that humans are causing it, and that we’re running out of time to avoid catastrophic climate change. But at the same time, their estimates for future global warming can seem frustratingly vague — best-case scenarios allow decades to solve the energy crisis, while worst-case scenarios seem utterly hopeless, predicting an uninhabitable planet no matter what we do.

At the University of Exeter, some researchers disagree with these vague boundaries. Professors Peter Cox, Chris Huntingford, and Mark Williamson co-authored a recent report in Nature that argues for a more constrained understanding of the climate’s sensitivity to carbon dioxide. In general, they found that both the worst-case and best-case scenarios for global warming are far more unlikely than previously thought.

Their research focuses on a measure known as equilibrium climate sensitivity (ECS) — defined as “the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2.”

This concept simplifies Earth’s actual climate — CO2 won’t double instantly and it often takes decades or centuries for the climate to return to equilibrium — but ECS is critical for gauging the planet’s response to fossil fuel emissions. It can help predict how much warming will come from increases in atmospheric CO2, even before the climate settles into equilibrium.

 

How hot will it get if atmospheric CO2 doubles?

In other words, what is Earth’s ECS? The Intergovernmental Panel on Climate Change (IPCC) predicts that ECS is between 1.5-4.5 °C, with a 25% chance that it exceeds 4 °C and a 16% chance that it’s lower than 1.5 °C.

Cox and his colleagues argue that this range is too generous. Using tighter constraints based on historical observations of warming, they conclude that doubling atmospheric CO2 would push temperatures between 2.2–3.4 °C higher, with a 2% chance that ECS exceeds 4 °C and a 3% chance that ECS is lower than 1.5 °C. The extremes (both good and bad) of global warming thus appear less likely.

Although some scientists applauded these findings, others are more skeptical. Kevin Trenberth, a Senior Scientist in the Climate Analysis Section at the National Center for Atmospheric Research (NCAR), says the study’s climate models don’t adequately account for natural variability, making it difficult to give the findings much weight.

“I do think some previous estimates are overblown and they do not adequately use the observations we have as constraints,” he explains. “This study picks up on that a bit, and in that sense the new results seem reasonable and could be important for ruling out really major extreme changes. But it is much more important to improve the models and make better projections into the future.”

 

But When Will Atmospheric CO2 Double?

CO2 levels may not have doubled from pre-industrial levels yet, but they’re increasing at an alarming rate.

In 1958, NOAA’s Mauna Loa observatory opened in Hawaii to monitor atmospheric change. Its first reading of atmospheric CO2 levels clocked in at 280 parts per million (ppm). In 2013, CO2 levels surpassed 400 ppm for the first time, and just four years later, the Mauna Loa Observatory recorded its first-ever carbon dioxide reading above 410 ppm.

The last time CO2 levels were this high, global surface temperatures were 6 °C higher, oceans were 100 feet higher, and modern humans didn’t exist. Unless the international community makes massive strides towards the Paris Agreement goals, atmospheric CO2 could rise to 560 ppm by 2050 — double the concentration in 1958, and a sign of much more global warming to come.

Annual CO2 Emissions from Fossil Fuels by Country, 1959-2017 / Source: Carbon Brief

 

 

 

 

 

 

 

 

 

 

 

 

 

Avoiding the worst, while ensuring the bad

On the one hand, Cox’s findings come as a sigh of relief, as they reduce uncertainty about ECS and renew hope of avoiding catastrophic global warming.

But these results also imply that there’s very little hope of achieving the best-case scenarios predicted by the Paris Agreement, which seeks to keep temperatures at or below a 1.5 °C increase. Since atmospheric CO2 levels could plausibly double by midcentury, Cox’s results indicate that not only will temperatures soar past 1.5 °C, but that they’ll quickly rise higher than Paris’ upper limit of 2 degrees.

Even 2 °C of warming would be devastating for the planet, leading to an ice-free Arctic and over a meter of sea level rise — enough to submerge the Marshall Islands — while leaving tropical regions deathly hot for outdoor workers and metropolises Karachi and Kolkata nearly uninhabitable. Deadly heat waves would plague North Africa, Central America, Southeast Asia, and the Southeast US, while decreasing the yields of wheat, rice and corn by over 20%. Food shortages and extreme weather could trigger the migration of tens of millions of people and leave regions of the world ungovernable.

This two-degree world might not be far off. Global temperatures have already risen 0.8 degrees celsius since pre-industrial levels, and the past few years have provided grave indications that things are heating up.

In January, NASA announced that 2017 was the second-hottest year on record (behind 2016 and ahead of 2015) while NOAA recorded it as their third-hottest year on record. Despite this minor discrepancy, both agencies agree that the 2017 data make the past four years the hottest period in their 138-year archives.

Global warming continues, and since the climate responds to rising CO2 levels on a delay of decades, there is more warming “in the pipeline,” no matter how quickly we cut fossil fuel emissions. But understanding ECS and continuing to improve climate models, as Dr. Trenberth suggests, can provide a clearer picture of what’s ahead and give us a better idea of the actions we need to take.

Rewinding the Doomsday Clock

On Thursday, the Bulletin of Atomic Scientists inched their iconic Doomsday Clock forward another thirty seconds. It is now two minutes to midnight.

Citing the growing threats of climate change, increasing tensions between nuclear-armed countries, and a general loss of trust in government institutions, the Bulletin warned that we are “making the world security situation more dangerous than it was a year ago—and as dangerous as it has been since World War II.”

The Doomsday Clock hasn’t fallen this close to midnight since 1953, a year after the US and Russia tested the hydrogen bomb, a bomb up to 1000 times more powerful than the bombs dropped on Hiroshima and Nagasaki. And like 1953, this year’s announcement highlighted the increased global tensions around nuclear weapons.

As the Bulletin wrote in their statement, “To call the world nuclear situation dire is to understate the danger—and its immediacy.”

Between the US, Russia, North Korea, and Iran, the threats of aggravated nuclear war and accidental nuclear war both grew in 2017. As former Secretary of Defense William Perry said in a statement, “The events of the past year have only increased my concern that the danger of a nuclear catastrophe is increasingly real. We are failing to learn from the lessons of history as we find ourselves blundering headfirst towards a second cold war.”

The threat of nuclear war has hovered in the background since the weapons were invented, but with the end of the Cold War, many were pulled into what now appears to have been a false sense of security. In the last year, aggressive language and plans for new and upgraded nuclear weapons have reignited fears of nuclear armageddon. The recent false missile alerts in Hawaii and Japan were perhaps the starkest reminders of how close nuclear war feels, and how destructive it would be. 

 

But the nuclear threat isn’t all the Bulletin looks at. 2017 also saw the growing risk of climate change, a breakdown of trust in government institutions, and the emergence of new technological threats.

Climate change won’t hit humanity as immediately as nuclear war, but with each year that the international community fails to drastically reduce carbon fossil fuel emissions, the threat of catastrophic climate change grows. In 2017, the US pulled out of the Paris Climate Agreement and global carbon emissions grew 2% after a two-year plateau. Meanwhile, NASA and NOAA confirmed that the past four years are the hottest four years they’ve ever recorded.

For emerging technological risks, such as widespread cyber attacks, the development of autonomous weaponry, and potential misuse of synthetic biology, the Bulletin calls for the international community to work together. They write, “world leaders also need to seek better collective methods of managing those advances, so the positive aspects of new technologies are encouraged and malign uses discovered and countered.”

Pointing to disinformation campaigns and “fake news”, the Bulletin’s Science and Security Board writes that they are “deeply concerned about the loss of public trust in political institutions, in the media, in science, and in facts themselves—a loss that the abuse of information technology has fostered.”

 

Turning Back the Clock

The Doomsday Clock is a poignant symbol of the threats facing human civilization, and it received broad media attention this week through British outlets like The Guardian and The Independent, Australian outlets such as ABC Online, and American outlets from Fox News to The New York Times.

“[The clock] is a tool,” explains Lawrence Krauss, a theoretical physicist at Arizona State University and member of the Bulletin’s Science and Security Board. “For one day a year, there are thousands of newspaper stories about the deep, existential threats that humanity faces.”

The Bulletin ends its report with a list of priorities to help turn back the Clock, chocked full of suggestions for government and industrial leaders. But the authors also insist that individual citizens have a crucial role in tackling humanity’s greatest risks.

“Leaders react when citizens insist they do so,” the authors explain. “Citizens around the world can use the power of the internet to improve the long-term prospects of their children and grandchildren. They can insist on facts, and discount nonsense. They can demand action to reduce the existential threat of nuclear war and unchecked climate change. They can seize the opportunity to make a safer and saner world.”

You can read the Bulletin’s full report here.

Help Support FLI This Giving Tuesday

We’ve accomplished a lot. FLI has only been around for a few years, but during that time, we’ve:

  • Helped mainstream AI safety research,
  • Funded 37 AI safety research grants,
  • Launched multiple open letters that have brought scientists and the public together for the common cause of a beneficial future,
  • Drafted the 23 Asilomar Principles which offer guidelines for ensuring that AI is developed beneficially for all,
  • Supported the successful efforts by the International Campaign to Abolish Nuclear Weapons (ICAN) to get a treaty UN treaty passed that bans and stigmatizes nuclear weapons (ICAN won this year’s Nobel Peace Prize for their work),
  • Supported efforts to advance negotiations toward a ban on lethal autonomous weapons with a video that’s been viewed over 30 millions times,
  • Launched a website that’s received nearly 3 million page views,
  • Broadened the conversation about how humanity can flourish rather than flounder with powerful technologies.

But that’s just the beginning. There’s so much more we’d like to do, but we need your help. On Giving Tuesday this year, please consider a donation to FLI.

Where would your money go?

  • More AI safety research,
  • More high-quality information and communication about AI safety,
  • More efforts to keep the future safe from lethal autonomous weapons,
  • More efforts to trim excess nuclear stockpiles & reduce nuclear war risk,
  • More efforts to guarantee a future we can all look forward to.

Please Consider a Donation to Support FLI

Harvesting Water Out of Thin Air: A Solution to Water Shortage Crisis?

The following post was written by Jung Hyun Claire Park.

One in nine people around the world do not have access to clean water.  As the global population increases and climate heats up, experts fear water shortages will increase. To address this anticipated crisis, scientists are turning to a natural reserve of fresh water that has yet to be exploited: the atmosphere.

The atmosphere is estimated to contain 13 trillion liters of water vapor and droplets, which could significantly contribute to resolving the water shortage problem. However, a number of attempts have already been made to collect water from air. Previously, researchers have used porous materials such as zeolites, silica gel, and clay to capture water molecules, but these approaches suffered from several limitations. First, the aforementioned materials work efficiently only in high-humidity condition. Yet it’s low-humidity areas, like sub-Saharan Africa, which are in greatest need of clean drinking water. Another limitation is that these materials tend to cling too tightly to the water molecules they collect. Thus, these previous methods of collecting water from air have required high energy consumption to release the absorbed water, diminishing their viability as a solution to the water shortage crisis.

Now, Dr. Omar Yaghi and a team of scientists at Massachusetts Institute of Technology and the University of California Berkeley have developed a new technology that provides a solution to these limitations. The technology uses a material called a metal-organic framework (MOF) that effectively captures water molecules at low-humidity levels. And the only energy necessary to release drinkable water from the MOFs can be harnessed from ambient sunlight.

How Does This System Work?

MOFs belong to a family of porous compounds whose sponge-like configuration is ideal for trapping molecules. The MOFs can be easily modified at the molecular level to meet various needs, and they are highly customizable. Researchers can modify the type of molecule that’s absorbed, the optimal humidity level for maximum absorption, and the energy required to release trapped molecules — thus yielding a plethora of potential MOF variations. The proposed water harvesting technology uses a hydrophilic variation of MOFs called microcrystalline powder MOF-801. This variation is engineered to more efficiently harvest water from an atmosphere in which the relative humidity level as low as 20% — the typical level found in the world’s driest regions. Furthermore, the MOF-801 only requires energy from ambient sunlight to relinquish its collected water, which means the energy necessary for this technology is abundant in precisely those desert areas with the most severely limited supply of fresh water.  MOF-801 overcomes most, if not all, of the limitations found in the materials that were previously proposed for harvesting water from air.

A Schematic of a metal-organic framework (MOF). The yellow balls represent the porous space where molecules are captured. The lines are organic linkers, and the blue intersections are metal ions. UC Berkeley, Berkeley Lab image

The prototype is shaped like a rectangular prism and it operates through a simple mechanism. To collect water from the atmosphere, MOF is pressed into a thin sheet of copper metal and placed under the solar absorber located on top of the prism. The condenser plate is placed at the bottom and is kept at room temperature. Once the top layer absorbs solar heat, water is released from the MOF and collected in the cooler bottom layer due to concentration and temperature difference. Tests showed that one kilogram (about 2 pounds) of MOF can collect about 2.8L of water per day. Yaghi notes that since the technology collects distilled water, all that’s needed is the addition of mineral ions. He suggests that one kilogram of MOF will be able to produce enough drinkable water per day for a person living in some of the driest regions on earth.

Image of a water harvesting prototype with MOF-801 with outer dimension of 7cm by 7cm x 4.5cm. MIT.

Why This Technology Is Promising

The promise of this technology mostly lies in its sustainability. Water can be pulled from the air without any energy input beyond that which can be collected from the ambient sunlight. In addition, MOF-801 is a zirconium-based compound that is widely available for a low cost. And the technology has a long-life span: Yaghi predicts that the MOF will last through at least 100,000 cycles of water absorption and desorption, and thus it does not require frequent replacement. Plus, the water harvesting technology employing MOF isn’t limited to drinking water. It could be used for any service requiring water, such as agriculture. Yaghi believes that this water harvesting technology could pose a viable solution for water shortage problems in various regions of the world.

Yaghi also anticipates that the material itself could be used for the separation, storage, and catalysis of molecules other than water as well. For instance, MOF can be tailored to capture carbon emissions before those emissions reach the atmosphere. Or they may be designed to remove existing CO2 from the atmosphere. MOF, as the name suggests, is simply a framework, and thus it has opened up many opportunities for modification to suit practical needs.

Future of Water Harvesting Technology

The team of researchers from Berkeley and MIT are currently pushing to test the water harvesting technology in real-life settings in regions with low humidity levels. Yaghi remarked that his ultimate goal would be to “have drinking water widely available, especially in areas that lack clean water.” He envisions providing water to villages that are “off-grid,” where each household will have a machine and create their own “personalized water.” And he hopes his envisioned future may not be too far away.

15,000 Scientists Sign “Second Notice” Warning About Climate Change

In 1992, the Union of Concerned Scientists and the majority of Nobel laureates in the sciences penned the “World Scientists’ Warning to Humanity.” Pointing to growing problems like ocean dead zones, biodiversity destruction, climate change, and continued human population growth, the scientists argued that “a great change in our stewardship of the Earth and the life on it is required, if vast human misery is to be avoided.”

Now, 25 years after this initial dire warning, over 15,000 scientists from 184 countries have signed a much more urgent letter to humanity.

Led by William Ripple, an ecologist at Oregon State University, the “second notice” to humanity warns that we are on a collision course with the natural world, and that “soon it will be too late to shift course away from our failing trajectory.”

“Since 1992, with the exception of stabilizing the stratospheric ozone layer, humanity has failed to make sufficient progress in generally solving these foreseen environmental challenges, and alarmingly, most of them are getting far worse,” the scientists write.

In particular, the authors fear that rising greenhouse gas emissions from fossil fuel use, deforestation, and agricultural production significantly raise the risk of catastrophic climate change. As the growing population continues to stress ecosystems, more communities will face water shortages, failed harvests, and growing unrest.

The authors write: “By failing to adequately limit population growth, reassess the role of an economy rooted in growth, reduce greenhouse gases, incentivize renewable energy, protect habitat, restore ecosystems, curb pollution, halt defaunation, and constrain invasive alien species, humanity is not taking the urgent steps needed to safeguard our imperiled biosphere.”

Globally, freshwater resources continue to be depleted, ocean dead zones continue to expand, and the amount of species and forestry continue to plummet at unprecedented rates. Our growing population, land use, and fossil fuel use are threatening the very foundations for life on Earth.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image: Ripple et al, Bioscience 2017

 

Is There Hope?

Twenty-five years ago, scientists feared that our rapid population growth and economic growth were stressing Earth’s ecosystems “beyond their capacities to support the web of life,” and that we were “fast approaching many of the limits of what the biosphere can tolerate without substantial and irreversible harm.”

But despite these dire warnings, scientists aren’t without hope. They point to ozone depletion as an example of reversing humanity’s impact on the environment, and they also note that extreme poverty and hunger have diminished globally, while investments in girls’ and women’s education have contributed to more stable fertility rates.

The authors also note that the renewable energy sector has rapidly grown since 1992, and that some regions have successfully limited deforestation.

But these measures alone aren’t enough. As such, Ripple and his coauthors present 13 different strategies for moving towards sustainability, including: establishing well-funded nature reserves, reducing food waste through education and infrastructure, promoting dietary shifts towards plant-based foods, developing green technologies, and establishing economic incentives to shift patterns of consumption.

Few of these changes can happen without popular support, however, and the authors argue that scientists, media influencers and regular citizens must take action “as a moral imperative to current and future generations of human and other life.”

“Scientists are in the business of analyzing data and looking at the long-term consequences,” Ripple said in a release. “Those who signed this second warning aren’t just raising a false alarm. They are acknowledging the obvious signs that we are heading down an unsustainable path. We are hoping that our paper will ignite a widespread public debate about the global environment and climate.”

In the letter’s conclusion, Ripple writes: “We must recognize, in our day-to-day lives and in our governing institutions, that Earth with all its life is our only home. … Working together while respecting the diversity of people and opinions and the need for social justice around the world, we can make great progress for the sake of humanity and the planet on which we depend.”

If you’re a scientist reading this, you can sign the “second notice” here, and join The Alliance of World Scientists (AWS), a new international assembly of scientists founded by William Ripple, which is independent of both governmental and non-governmental organizations and corporations. 

Podcast: Choosing a Career to Tackle the World’s Biggest Problems with Rob Wiblin and Brenton Mayer

If you want to improve the world as much as possible, what should you do with your career? Should you become a doctor, an engineer or a politician? Should you try to end global poverty, climate change, or international conflict? These are the questions that the research group, 80,000 Hours, tries to answer.

To learn more, I spoke with Rob Wiblin and Brenton Mayer of 80,000 Hours. The following are highlights of the interview, but you can listen to the full podcast above or read the transcript here.

Can you give us some background about 80,000 Hours?

Rob: 80,000 Hours has been around for about six years and started when Benjamin Todd and Will MacAskill wanted to figure out how they could do as much good as possible. They started looking into things like the odds of becoming an MP in the UK or if you became a doctor, how many lives would you save. Pretty quickly, they were learning things that no one else had investigated.

They decided to start 80,000 Hours, which would conduct this research in a more systematic way and share it with people who wanted to do more good with their career.

80,000 hours is roughly the number of hours that you’d work in a full-time professional career. That’s a lot of time, so it pays off to spend quite a while thinking about what you’re going to do with that time.

On the other hand, 80,000 hours is not that long relative to the scale of the problems that the world faces. You can’t tackle everything. You’ve only got one career, so you should be judicious about what problems you try to solve and how you go about solving them.

How do you help people have more of an impact with their careers?

Brenton: The main thing is a career guide. We’ll talk about how to have satisfying careers, how to work on one of the world’s most important problems, how to set yourself up early so that later on you can have a really large impact.

The second part that we do is do career coaching and try to apply advice to individuals.

What is earning to give?

Rob: Earning to give is the career approach where you try to make a lot of money and give it to organizations that can use it to have a really large positive impact. I know people who can make millions of dollars a year doing the thing they love and donate most of that to effective nonprofits, supporting 5, 10, 15, possibly even 20 people to do direct work in their place.

Can you talk about research you’ve been doing regarding the world’s most pressing problems?

Rob: One of the first things we realized is that if you’re trying to help people alive today, your money can go further in the developing world. We just need to scale up solutions to basic health problems and economic issues that have been resolved elsewhere.

Moving beyond that, what other groups in the world are extremely neglected? Factory farmed animals really stand out. There’s very little funding focused on improving farm animal welfare.

The next big idea was, of all the people that we could help, what fraction are alive today? We think that it’s only a small fraction. There’s every reason to think humanity could live for another 100 generations on Earth and possibly even have our descendants alive on other planets.

We worry a lot about existential risks and ways that civilization can go off track and never recover. Thinking about the long-term future of humanity is where a lot of our attention goes and where I think people can have the largest impact with their career.

Regarding artificial intelligence safety, nuclear weapons, biotechnology and climate change, can you consider different ways that people could pursue either careers or “earn to give” options for these fields?

Rob: One would be to specialize in machine learning or other technical work and use those skills to figure out how can we make artificial intelligence aligned with human interests. How do we make the AI do what we want and not things that we don’t intend?

Then there’s the policy and strategy side, trying to answer questions like how do we prevent an AI arms race? Do we want artificial intelligence running military robots? Do we want the government to be more involved in regulating artificial intelligence or less involved? You can also approach this if you have a good understanding of politics, policy, and economics. You can potentially work in government, military or think tanks.

Things like communications, marketing, organization, project management, and fundraising operations — those kinds of things can be quite hard to find skilled, reliable people for. And it can be surprisingly hard to find people who can handle media or do art and design. If you have those skills, you should seriously consider applying to whatever organizations you admire.

[For nuclear weapons] I’m interested in anything that can promote peace between the United States and Russia and China. A war between those groups or an accidental nuclear incident seems like the most likely thing to throw us back to the stone age or even pre-stone age.

I would focus on ensuring that they don’t get false alarms; trying to increase trust between the countries in general and the communication lines so that if there are false alarms, they can quickly diffuse the situation.

The best opportunities [in biotech] are in early surveillance of new diseases. If there’s a new disease coming out, a new flu for example, it takes  a long time to figure out what’s happened.

And when it comes to controlling new diseases, time is really of the essence. If you can pick it up within a few days or weeks, then you have a reasonable shot at quarantining the people and following up with everyone that they’ve met and containing it. Any technologies that we can invent or any policies that will allow us to identify new diseases before they’ve spread to too many people is going to help with both natural pandemics, and also any kind of synthetic biology risks, or accidental releases of diseases from biological researchers.

Brenton: A Wagner and Weitzman paper suggests that there’s about a 10% chance of warming larger than 4.8 degrees Celsius, or a 3% chance of more than 6 degrees Celsius. These are really disastrous outcomes. If you’re interested in climate change, we’re pretty excited about you working on these very bad scenarios. Sensible things to do would be improving our ability to forecast; thinking about the positive feedback loops that might be inherent in Earth’s climate; thinking about how to enhance international corporation.

Rob: It does seem like solar power and storage of energy from solar power is going to have the biggest impact on emissions over at least the next 50 years. Anything that can speed up that transition makes a pretty big contribution.

Rob, can you explain your interest in long-term multigenerational indirect effects and what that means?

Rob: If you’re trying to help people and animals thousands of years in the future, you have to help them through a causal chain that involves changing the behavior of someone today and then that’ll help the next generation and so on.

One way to improve the long-term future of humanity is to do very broad things that improve human capabilities like reducing poverty, improving people’s health, making schools better.

But in a world where the more science and technology we develop, the more power we have to destroy civilization, it becomes less clear that broadly improving human capabilities is a great way to make the future go better. If you improve science and technology, you both improve our ability to solve problems and create new problems.

I think about what technologies can we invent that disproportionately make the world safer rather than more risky. It’s great to improve the technology to discover new diseases quickly and to produce vaccines for them quickly, but I’m less excited about generically pushing forward the life sciences because there’s a lot of potential downsides there as well.

Another way that we can robustly prepare humanity to deal with the long-term future is to have better foresight about the problems that we’re going to face. That’s a very concrete thing you can do that puts humanity in a better position to tackle problems in the future — just being able to anticipate those problems well ahead of time so that we can dedicate resources to averting those problems.

To learn more, visit 80000hours.org and subscribe to Rob’s new podcast.

The U.S. Worldwide Threat Assessment Includes Warnings of Cyber Attacks, Nuclear Weapons, Climate Change, etc.

Last Thursday – just one day before the WannaCry ransomware attack would shut down 16 hospitals in the UK and ultimately hit hundreds of thousands of organizations and individuals in over 150 countries – the Director of National Intelligence, Daniel Coats, released the Worldwide Threat Assessment of the US Intelligence Community.

Large-scale cyber attacks are among the first risks cited in the document, which warns that “cyber threats also pose an increasing risk to public health, safety, and prosperity as cyber technologies are integrated with critical infrastructure in key sectors.”

Perhaps the other most prescient, or at least well-timed, warning in the document relates to North Korea’s ambitions to create nuclear intercontinental ballistic missiles (ICBMs). Coats writes:

“Pyongyang is committed to developing a long-range, nuclear-armed missile that is capable of posing a direct threat to the United States; it has publicly displayed its road-mobile ICBMs on multiple occasions. We assess that North Korea has taken steps toward fielding an ICBM but has not flight-tested it.”

This past Sunday, North Korea performed a missile test launch, which many experts believe shows considerable progress toward the development of an ICBM. Though the report hints this may be less of an actual threat from North Korea and more for show. “We have long assessed that Pyongyang’s nuclear capabilities are intended for deterrence, international prestige, and coercive diplomacy,” says Coats in the report.

More Nuclear Threats

The Assessment also addresses the potential of nuclear threats from China and Pakistan. China “continues to modernize its nuclear missile force by adding more survivable road-mobile systems and enhancing its silo-based systems. This new generation of missiles is intended to ensure the viability of China’s strategic deterrent by providing a second-strike capability.” In addition, China is also working to develop “its first long-range, sea-based nuclear capability.”

Meanwhile, though Pakistan’s nuclear program doesn’t pose a direct threat to the U.S., advances in Pakistan’s nuclear capabilities could risk further destabilization along the India-Pakistan border.

The report warns: “Pakistan’s pursuit of tactical nuclear weapons potentially lowers the threshold for their use.” And of the ongoing conflicts between Pakistan and India, it says, “Increasing numbers of firefights along the Line of Control, including the use of artillery and mortars, might exacerbate the risk of unintended escalation between these nuclear-armed neighbors.”

This could be especially problematic because “early deployment during a crisis of smaller, more mobile nuclear weapons would increase the amount of time that systems would be outside the relative security of a storage site, increasing the risk that a coordinated attack by non-state actors might succeed in capturing a complete nuclear weapon.”

Even a small nuclear war between India and Pakistan could trigger a nuclear winter that could send the planet into a mini ice age and starve an estimated 1 billion people.

Artificial Intelligence

Nukes aren’t the only weapons the government is worried about. The report also expresses concern about the impact of artificial intelligence on weaponry: “Artificial Intelligence (Al) is advancing computational capabilities that benefit the economy, yet those advances also enable new military capabilities for our adversaries.”

Coats worries that AI could negatively impact other aspects of society, saying, “The implications of our adversaries’ abilities to use AI are potentially profound and broad. They include an increased vulnerability to cyber attack, difficulty in ascertaining attribution, facilitation of advances in foreign weapon and intelligence systems, the risk of accidents and related liability issues, and unemployment.”

Space Warfare

But threats of war are not expected to remain Earth-bound. The Assessment also addresses issues associated with space warfare, which could put satellites and military communication at risk.

For example, the report warns that “Russia and China perceive a need to offset any US military advantage derived from military, civil, or commercial space systems and are increasingly considering attacks against satellite systems as part of their future warfare doctrine.”

The report also adds that “the global threat of electronic warfare (EW) attacks against space systems will expand in the coming years in both number and types of weapons.” Coats expects that EW attacks will “focus on jamming capabilities against dedicated military satellite communications” and against GPS, among others.

Environmental Risks & Climate Change

Plenty of global threats do remain Earth-bound though, and not all are directly related to military concerns. The government also sees environmental issues and climate change as potential threats to national security.

The report states, “The trend toward a warming climate is forecast to continue in 2017. … This warming is projected to fuel more intense and frequent extreme weather events that will be distributed unequally in time and geography. Countries with large populations in coastal areas are particularly vulnerable to tropical weather events and storm surges, especially in Asia and Africa.”

In addition to rising temperatures, “global air pollution is worsening as more countries experience rapid industrialization, urbanization, forest burning, and agricultural waste incineration, according to the World Health Organization (WHO). An estimated 92 percent of the world’s population live in areas where WHO air quality standards are not met.”

According to the Assessment, biodiversity loss will also continue to pose an increasing threat to humanity. The report suggests global biodiversity “will likely continue to decline due to habitat loss, overexploitation, pollution, and invasive species, … disrupting ecosystems that support life, including humans.”

The Assessment goes on to raise concerns about the rate at which biodiversity loss is occurring. It says, “Since 1970, vertebrate populations have declined an estimated 60 percent … [and] populations in freshwater systems declined more than 80 percent. The rate of species loss worldwide is estimated at 100 to 1,000 times higher than the natural background extinction rate.”

Other Threats

The examples above are just a sampling of the risks highlighted in the Assessment. A great deal of the report covers threats of terrorism, issues with Russia, China and other regional conflicts, organized crime, economics, and even illegal fishing. Overall, the report is relatively accessible and provides a quick summary of the greatest known risks that could threaten not only the U.S., but also other countries in 2017. You can read the report in its entirety here.

Podcast: Climate Change with Brian Toon and Kevin Trenberth

Too often, the media focus their attention on climate-change deniers, and as a result, when scientists speak with the press, it’s almost always a discussion of whether climate change is real. Unfortunately, that can make it harder for those who recognize that climate change is a legitimate threat to fully understand the science and impacts of rising global temperatures.

I recently visited the National Center for Atmospheric Research in Boulder, CO and met with climate scientists Dr. Kevin Trenberth and CU Boulder’s Dr. Brian Toon to have a different discussion. I wanted better answers about what climate change is, what its effects could be, and how can we prepare for the future.

The discussion that follows has been edited for clarity and brevity, and I’ve added occasional comments for context. You can also listen to the podcast above or read the full transcript here for more in-depth insight into these issues.

Our discussion began with a review of the scientific evidence behind climate change.

Trenberth: “The main source of human-induced climate change is from increasing carbon dioxide and other greenhouse gases in the atmosphere. And we have plenty of evidence that we’re responsible for the over 40% increase in carbon dioxide concentrations in the atmosphere since pre-industrial times, and more than half of that has occurred since 1980.”

Toon: “I think the problem is that carbon dioxide is rising proportional to population on the Earth. If you just plot carbon dioxide in the last few decades versus global population, it tracks almost exactly. In coming decades, we’re increasing global population by a million people a week. That’s a new city in the world of a million people every week somewhere, and the amount of energy that’s already committed to supporting this increasing population is very large.”

The financial cost of climate change is also quite large.

Trenberth: “2012 was the warmest year on record in the United States. There was a very widespread drought that occurred, starting here in Colorado, in the West. The drought itself was estimated to cost about $75 billion. Superstorm Sandy is a different example, and the damages associated with that are, again, estimated to be about $75 billion. At the moment, the cost of climate and weather related disasters is something like $40 billion a year.”

We discussed possible solutions to climate change, but while solutions exist, it was easy to get distracted by just how large – and deadly — the problem truly is.

Toon: “Technologically, of course, there are lots of things we can do. Solar energy and wind energy are both approaching or passing the cost of fossil fuels, so they’re advantageous. [But] there’s other aspects of this like air pollution, for example, which comes from burning a lot of fossil fuels. It’s been estimated to kill seven million people a year around the Earth. Particularly in countries like China, it’s thought to be killing about a million people a year. Even in the United States, it’s causing probably 10,000 or more deaths a year.”

Unfortunately, Toon may be underestimating the number of US deaths resulting from air pollution. A 2013 study out of MIT found that air pollution causes roughly 200,000 early deaths in the US each year. And there’s still the general problem that carbon in the atmosphere (not the same as air pollution) really isn’t something that will go away anytime soon.

Toon: “Carbon dioxide has a very, very long lifetime. Early IPCC reports would often say carbon dioxide has a lifetime of 50 years. Some people interpreted that to mean it’ll go away in 50 years, but what it really meant was that it would go into equilibrium with the oceans in about 50 years. When you go somewhere in your car, about 20% of that carbon dioxide that is released to the atmosphere is still going to be there in thousands of years. The CO2 has lifetimes of thousands and thousands of years, maybe tens or hundreds of thousands of years. It’s not reversible.”

Trenberth: “Every springtime, the trees take up carbon dioxide and there’s a draw-down of carbon dioxide in the atmosphere, but then, in the fall, the leaves fall on the forest floor and the twigs and branches and so on, and they decay and they put carbon dioxide back into the atmosphere. People talk about growing more trees, which can certainly take carbon dioxide out of the atmosphere to some extent, but then what do you do with all the trees? That’s part of the issue. Maybe you can bury some of them somewhere, but it’s very difficult. It’s not a full solution to the problem.”

Toon: “The average American uses the equivalent of about five tons of carbon a year – that’s an elephant or two. That means every year you have to go out in your backyard and bury an elephant or two.”

We know that climate change is expected to impact farming and sea levels. And we know that the temperature changes and increasing ocean acidification could cause many species to go extinct. But for the most part, scientists aren’t worried that climate change alone could cause the extinction of humanity. However, as a threat multiplier – that is, something that triggers other problems – climate change could lead to terrible famines, pandemics, and war. And some of this may already be underway.

Trenberth: “You don’t actually have to go a hundred years or a thousand years into the future before things can get quite disrupted relative to today. You can see some signs of that if you look around the world now. There’s certainly studies that have suggested that the changes in climate, and the droughts that occur and the wildfires and so on are already extra stressors on the system and have exacerbated wars in Sudan and in Syria. It’s one of the things which makes it very worrying for security around the world to the defense department, to the armed services, who are very concerned about the destabilizing effects of climate change around the world.”

Some of the instabilities around the world today are already leading to discussion about the possibility of using nuclear weapons. But too many nuclear weapons could trigger the “other” climate change: nuclear winter.

Toon: “Nuclear winter is caused by burning cities. If there were a nuclear war in which cities were attacked then the smoke that’s released from all those fires can go into the stratosphere and create a veil of soot particles in the upper atmosphere, which are very good at absorbing sunlight. It’s sort of like geoengineering in that sense; it reduces the temperature of the planet. Even a little war between India and Pakistan, for example — which, incidentally, have about 400 nuclear weapons between them at the moment — if they started attacking each other’s cities, the smoke from that could drop the temperature of the Earth back to preindustrial conditions. In fact, it’d be lower than anything we’ve seen in the climate record since the end of the last ice age, which would be devastating to mid-latitude agriculture.

“This is an issue people don’t really understand: the world food storage is only about 60 days. There’s not enough food on that planet to feed the population for more than 60 days. There’s only enough food in an average city to feed the city for about a week. That’s the same kind of issue that we’re coming to also with the changes in agriculture that we might face in the next century just from global warming. You have to be able to make up those food losses by shipping food from some other place. Adjusting to that takes a long time.”

Concern about our ability to adjust was a common theme. Climate change is occurring so rapidly that it will be difficult for all species, even people, to adapt quickly enough.

Trenberth: “We’re way behind in terms of what is needed because if you start really trying to take serious action on this, there’s a built-in delay of 20 or 30 years because of the infrastructure that you have in order to change that around. Then there’s another 20-year delay because the oceans respond very, very slowly. If you start making major changes now, you end up experiencing the effects of those changes maybe 40 years from now or something like that. You’ve really got to get ahead of this.

“The atmosphere is a global commons. It belongs to everyone. The air that’s over the US, a week later is over in Europe, and a week later it’s over China, and then a week later it’s back over the US again. If we dump stuff into the atmosphere, it gets shared among all of the nations.”

Toon: “Organisms are used to evolving and compensating for things, but not on a 40-year timescale. They’re used to slowly evolving and slowly responding to the environment, and here they’re being forced to respond very quickly. That’s an extinction problem. If you make a sudden change in the environment, you can cause extinctions.”

As dire as the situation might seem, there are still ways in which we can address climate change.

Toon: “I’m hopeful, at the local level, things will happen, I’m hopeful that money will be made out of converting to other energy systems, and that those things will move us forward despite the inability, apparently, of politicians to deal with things.”

Trenberth: “The real way of doing this is probably to create other kinds of incentives such as through a carbon tax, as often referred to, or a fee on carbon of some sort, which recognizes the downstream effects of burning coal both in terms of air pollution and in terms of climate change that’s currently not built into the cost of burning coal, and it really ought to be.”

Toon: “[There] is not really a question anymore about whether climate change is occurring or not. It certainly is occurring. However, how do you respond to that? What do you do? At least in the United States, it’s very clear that we’re a capitalistic society, and so we need to make it economically advantageous to develop these new energy technologies. I suspect that we’re going to see the rise of China and Asia in developing renewable energy and selling that throughout the world for the reason that it’s cheaper and they’ll make money out of it. [And] we’ll wake up behind the curve.”

Note from FLI: Among our objectives is to inspire discussion and a sharing of ideas. As such, we interview researchers and thought leaders who we believe will help spur discussion within our community. The interviews do not necessarily represent FLI’s opinions or views.

Why 2016 Was Actually a Year of Hope

Just about everyone found something to dislike about 2016, from wars to politics and celebrity deaths. But hidden within this year’s news feeds were some really exciting news stories. And some of them can even give us hope for the future.

Artificial Intelligence

Though concerns about the future of AI still loom, 2016 was a great reminder that, when harnessed for good, AI can help humanity thrive.

AI and Health

Some of the most promising and hopefully more immediate breakthroughs and announcements were related to health. Google’s DeepMind announced a new division that would focus on helping doctors improve patient care. Harvard Business Review considered what an AI-enabled hospital might look like, which would improve the hospital experience for the patient, the doctor, and even the patient’s visitors and loved ones. A breakthrough from MIT researchers could see AI used to more quickly and effectively design new drug compounds that could be applied to a range of health needs.

More specifically, Microsoft wants to cure cancer, and the company has been working with research labs and doctors around the country to use AI to improve cancer research and treatment. But Microsoft isn’t the only company that hopes to cure cancer. DeepMind Health also partnered with University College London’s hospitals to apply machine learning to diagnose and treat head and neck cancers.

AI and Society

Other researchers are turning to AI to help solve social issues. While AI has what is known as the “white guy problem” and examples of bias cropped up in many news articles, Fei Fei Li has been working with STEM girls at Stanford to bridge the gender gap. Stanford researchers also published research that suggests  artificial intelligence could help us use satellite data to combat global poverty.

It was also a big year for research on how to keep artificial intelligence safe as it continues to develop. Google and the Future of Humanity Institute made big headlines with their work to design a “kill switch” for AI. Google Brain also published a research agenda on various problems AI researchers should be studying now to help ensure safe AI for the future.

Even the White House got involved in AI this year, hosting four symposia on AI and releasing reports in October and December about the potential impact of AI and the necessary areas of research. The White House reports are especially focused on the possible impact of automation on the economy, but they also look at how the government can contribute to AI safety, especially in the near future.

AI in Action

And of course there was AlphaGo. In January, Google’s DeepMind published a paper, which announced that the company had created a program, AlphaGo, that could beat one of Europe’s top Go players. Then, in March, in front of a live audience, AlphaGo beat the reigning world champion of Go in four out of five games. These results took the AI community by surprise and indicate that artificial intelligence may be progressing more rapidly than many in the field realized.

And AI went beyond research labs this year to be applied practically and beneficially in the real world. Perhaps most hopeful was some of the news that came out about the ways AI has been used to address issues connected with pollution and climate change. For example, IBM has had increasing success with a program that can forecast pollution in China, giving residents advanced warning about days of especially bad air. Meanwhile, Google was able to reduce its power usage by using DeepMind’s AI to manipulate things like its cooling systems.

And speaking of addressing climate change…

Climate Change

With recent news from climate scientists indicating that climate change may be coming on faster and stronger than previously anticipated and with limited political action on the issue, 2016 may not have made climate activists happy. But even here, there was some hopeful news.

Among the biggest news was the ratification of the Paris Climate Agreement. But more generally, countries, communities and businesses came together on various issues of global warming, and Voices of America offers five examples of how this was a year of incredible, global progress.

But there was also news of technological advancements that could soon help us address climate issues more effectively. Scientists at Oak Ridge National Laboratory have discovered a way to convert CO2 into ethanol. A researcher from UC Berkeley has developed a method for artificial photosynthesis, which could help us more effectively harness the energy of the sun. And a multi-disciplinary team has genetically engineered bacteria that could be used to help combat global warming.

Biotechnology

Biotechnology — with fears of designer babies and manmade pandemics – is easily one of most feared technologies. But rather than causing harm, the latest biotech advances could help to save millions of people.

CRISPR

In the course of about two years, CRISPR-cas9 went from a new development to what could become one of the world’s greatest advances in biology. Results of studies early in the year were promising, but as the year progressed, the news just got better. CRISPR was used to successfully remove HIV from human immune cells. A team in China used CRISPR on a patient for the first time in an attempt to treat lung cancer (treatments are still ongoing), and researchers in the US have also received approval to test CRISPR cancer treatment in patients. And CRISPR was also used to partially restore sight to blind animals.

Gene Drive

Where CRISPR could have the most dramatic, life-saving effect is in gene drives. By using CRISPR to modify the genes of an invasive species, we could potentially eliminate the unwelcome plant or animal, reviving the local ecology and saving native species that may be on the brink of extinction. But perhaps most impressive is the hope that gene drive technology could be used to end mosquito- and tick-borne diseases, such as malaria, dengue, Lyme, etc. Eliminating these diseases could easily save over a million lives every year.

Other Biotech News

The year saw other biotech advances as well. Researchers at MIT addressed a major problem in synthetic biology in which engineered genetic circuits interfere with each other. Another team at MIT engineered an antimicrobial peptide that can eliminate many types of bacteria, including some of the antibiotic-resistant “superbugs.” And various groups are also using CRISPR to create new ways to fight antibiotic-resistant bacteria.

Nuclear Weapons

If ever there was a topic that does little to inspire hope, it’s nuclear weapons. Yet even here we saw some positive signs this year. The Cambridge City Council voted to divest their $1 billion pension fund from any companies connected with nuclear weapons, which earned them an official commendation from the U.S. Conference of Mayors. In fact, divestment may prove a useful tool for the general public to express their displeasure with nuclear policy, which will be good, since one cause for hope is that the growing awareness of the nuclear weapons situation will help stigmatize the new nuclear arms race.

In February, Londoners held the largest anti-nuclear rally Britain had seen in decades, and the following month MinutePhysics posted a video about nuclear weapons that’s been seen by nearly 1.3 million people. In May, scientific and religious leaders came together to call for steps to reduce nuclear risks. And all of that pales in comparison to the attention the U.S. elections brought to the risks of nuclear weapons.

As awareness of nuclear risks grows, so do our chances of instigating the change necessary to reduce those risks.

The United Nations Takes on Weapons

But if awareness alone isn’t enough, then recent actions by the United Nations may instead be a source of hope. As October came to a close, the United Nations voted to begin negotiations on a treaty that would ban nuclear weapons. While this might not have an immediate impact on nuclear weapons arsenals, the stigmatization caused by such a ban could increase pressure on countries and companies driving the new nuclear arms race.

The U.N. also announced recently that it would officially begin looking into the possibility of a ban on lethal autonomous weapons, a cause that’s been championed by Elon Musk, Steve Wozniak, Stephen Hawking and thousands of AI researchers and roboticists in an open letter.

Looking Ahead

And why limit our hope and ambition to merely one planet? This year, a group of influential scientists led by Yuri Milner announced an Alpha-Centauri starshot, in which they would send a rocket of space probes to our nearest star system. Elon Musk later announced his plans to colonize Mars. And an MIT scientist wants to make all of these trips possible for humans by using CRISPR to reengineer our own genes to keep us safe in space.

Yet for all of these exciting events and breakthroughs, perhaps what’s most inspiring and hopeful is that this represents only a tiny sampling of all of the amazing stories that made the news this year. If trends like these keep up, there’s plenty to look forward to in 2017.

Podcast: FLI 2016 – A Year In Review

For FLI, 2016 was a great year, full of our own success, but also great achievements from so many of the organizations we work with. Max, Meia, Anthony, Victoria, Richard, Lucas, David, and Ariel discuss what they were most excited to see in 2016 and what they’re looking forward to in 2017.

AGUIRRE: I’m Anthony Aguirre. I am a professor of physics at UC Santa Cruz, and I’m one of the founders of the Future of Life Institute.

STANLEY: I’m David Stanley, and I’m currently working with FLI as a Project Coordinator/Volunteer Coordinator.

PERRY: My name is Lucas Perry, and I’m a Project Coordinator with the Future of Life Institute.

TEGMARK: I’m Max Tegmark, and I have the fortune to be the President of the Future of Life Institute.

CHITA-TEGMARK: I’m Meia Chita-Tegmark, and I am a co-founder of the Future of Life Institute.

MALLAH: Hi, I’m Richard Mallah. I’m the Director of AI Projects at the Future of Life Institute.

KRAKOVNA: Hi everyone, I am Victoria Krakovna, and I am one of the co-founders of FLI. I’ve recently taken up a position at Google DeepMind working on AI safety.

CONN: And I’m Ariel Conn, the Director of Media and Communications for FLI. 2016 has certainly had its ups and downs, and so at FLI, we count ourselves especially lucky to have had such a successful year. We’ve continued to progress with the field of AI safety research, we’ve made incredible headway with our nuclear weapons efforts, and we’ve worked closely with many amazing groups and individuals. On that last note, much of what we’ve been most excited about throughout 2016 is the great work these other groups in our fields have also accomplished.

Over the last couple of weeks, I’ve sat down with our founders and core team to rehash their highlights from 2016 and also to learn what they’re all most looking forward to as we move into 2017.

To start things off, Max gave a summary of the work that FLI does and why 2016 was such a success.

TEGMARK: What I was most excited by in 2016 was the overall sense that people are taking seriously this idea – that we really need to win this race between the growing power of our technology and the wisdom with which we manage it. Every single way in which 2016 is better than the Stone Age is because of technology, and I’m optimistic that we can create a fantastic future with tech as long as we win this race. But in the past, the way we’ve kept one step ahead is always by learning from mistakes. We invented fire, messed up a bunch of times, and then invented the fire extinguisher. We at the Future of Life Institute feel that that strategy of learning from mistakes is a terrible idea for more powerful tech, like nuclear weapons, artificial intelligence, and things that can really alter the climate of our globe.

Now, in 2016 we saw multiple examples of people trying to plan ahead and to avoid problems with technology instead of just stumbling into them. In April, we had world leaders getting together and signing the Paris Climate Accords. In November, the United Nations General Assembly voted to start negotiations about nuclear weapons next year. The question is whether they should actually ultimately be phased out; whether the nations that don’t have nukes should work towards stigmatizing building more of them – with the idea that 14,000 is way more than anyone needs for deterrence. And – just the other day – the United Nations also decided to start negotiations on the possibility of banning lethal autonomous weapons, which is another arms race that could be very, very destabilizing. And if we keep this positive momentum, I think there’s really good hope that all of these technologies will end up having mainly beneficial uses.

Today, we think of our biologist friends as mainly responsible for the fact that we live longer and healthier lives, and not as those guys who make the bioweapons. We think of chemists as providing us with better materials and new ways of making medicines, not as the people who built chemical weapons and are all responsible for global warming. We think of AI scientists as – I hope, when we look back on them in the future – as people who helped make the world better, rather than the ones who just brought on the AI arms race. And it’s very encouraging to me that as much as people in general – but also the scientists in all these fields – are really stepping up and saying, “Hey, we’re not just going to invent this technology, and then let it be misused. We’re going to take responsibility for making sure that the technology is used beneficially.”

CONN: And beneficial AI is what FLI is primarily known for. So what did the other members have to say about AI safety in 2016? We’ll hear from Anthony first.

AGUIRRE: I would say that what has been great to see over the last year or so is the AI safety and beneficiality research field really growing into an actual research field. When we ran our first conference a couple of years ago, they were these tiny communities who had been thinking about the impact of artificial intelligence in the future and in the long-term future. They weren’t really talking to each other; they weren’t really doing much actual research – there wasn’t funding for it. So, to see in the last few years that transform into something where it takes a massive effort to keep track of all the stuff that’s being done in this space now. All the papers that are coming out, the research groups – you sort of used to be able to just find them all, easily identified. Now, there’s this huge worldwide effort and long lists, and it’s difficult to keep track of. And that’s an awesome problem to have.

As someone who’s not in the field, but sort of watching the dynamics of the research community, that’s what’s been so great to see. A research community that wasn’t there before really has started, and I think in the past year we’re seeing the actual results of that research start to come in. You know, it’s still early days. But it’s starting to come in, and we’re starting to see papers that have been basically created using these research talents and the funding that’s come through the Future of Life Institute. It’s been super gratifying. And seeing that it’s a fairly large amount of money – but fairly small compared to the total amount of research funding in artificial intelligence or other fields – but because it was so funding-starved and talent-starved before, it’s just made an enormous impact. And that’s been nice to see.

CONN: Not surprisingly, Richard was equally excited to see AI safety becoming a field of ever-increasing interest for many AI groups.

MALLAH: I’m most excited by the continued mainstreaming of AI safety research. There are more and more publications coming out by places like DeepMind and Google Brain that have really lent additional credibility to the space, as well as a continued uptake of more and more professors, and postdocs, and grad students from a wide variety of universities entering this space. And, of course, OpenAI has come out with a number of useful papers and resources.

I’m also excited that governments have really realized that this is an important issue. So, while the White House reports have come out recently focusing more on near-term AI safety research, they did note that longer-term concerns like superintelligence are not necessarily unreasonable for later this century. And that they do support – right now – funding safety work that can scale toward the future, which is really exciting. We really need more funding coming into the community for that type of research. Likewise, other governments – like the U.K. and Japan, Germany – have all made very positive statements about AI safety in one form or another. And other governments around the world.

CONN: In addition to seeing so many other groups get involved in AI safety, Victoria was also pleased to see FLI taking part in so many large AI conferences.

KRAKOVNA: I think I’ve been pretty excited to see us involved in these AI safety workshops at major conferences. So on the one hand, our conference in Puerto Rico that we organized ourselves was very influential and helped to kick-start making AI safety more mainstream in the AI community. On the other hand, it felt really good in 2016 to complement that with having events that are actually part of major conferences that were co-organized by a lot of mainstream AI researchers. I think that really was an integral part of the mainstreaming of the field. For example, I was really excited about the Reliable Machine Learning workshop at ICML that we helped to make happen. I think that was something that was quite positively received at the conference, and there was a lot of good AI safety material there.

CONN: And of course, Victoria was also pretty excited about some of the papers that were published this year connected to AI safety, many of which received at least partial funding from FLI.

KRAKOVNA: There were several excellent papers in AI safety this year, addressing core problems in safety for machine learning systems. For example, there was a paper from Stuart Russell’s lab published at NIPS, on cooperative IRL. This is about teaching AI what humans want – how to train an RL algorithm to learn the right reward function that reflects what humans want it to do. DeepMind and FHI published a paper at UAI on safely interruptible agents, that formalizes what it means for an RL agent not to have incentives to avoid shutdown. MIRI made an impressive breakthrough with their paper on logical inductors. I’m super excited about all these great papers coming out, and that our grant program contributed to these results.

CONN: For Meia, the excitement about AI safety went beyond just the technical aspects of artificial intelligence.

CHITA-TEGMARK: I am very excited about the dialogue that FLI has catalyzed – and also engaged in – throughout 2016, and especially regarding the impact of technology on society. My training is in psychology; I’m a psychologist. So I’m very interested in the human aspect of technology development. I’m very excited about questions like, how are new technologies changing us? How ready are we to embrace new technologies? Or how our psychological biases may be clouding our judgement about what we’re creating and the technologies that we’re putting out there. Are these technologies beneficial for our psychological well-being, or are they not?

So it has been extremely interesting for me to see that these questions are being asked more and more, especially by artificial intelligence developers and also researchers. I think it’s so exciting to be creating technologies that really force us to grapple with some of the most fundamental aspects, I would say, of our own psychological makeup. For example, our ethical values, our sense of purpose, our well-being, maybe our biases and shortsightedness and shortcomings as biological human beings. So I’m definitely very excited about how the conversation regarding technology – and especially artificial intelligence – has evolved over the last year. I like the way it has expanded to capture this human element, which I find so important. But I’m also so happy to feel that FLI has been an important contributor to this conversation.

CONN: Meanwhile, as Max described earlier, FLI has also gotten much more involved in decreasing the risk of nuclear weapons, and Lucas helped spearhead one of our greatest accomplishments of the year.

PERRY: One of the things that I was most excited about was our success with our divestment campaign. After a few months, we had great success in our own local Boston area with helping the City of Cambridge to divest its $1 billion portfolio from nuclear weapon producing companies. And we see this as a really big and important victory within our campaign to help institutions, persons, and universities to divest from nuclear weapons producing companies.

CONN: And in order to truly be effective we need to reach an international audience, which is something Dave has been happy to see grow this year.

STANLEY: I’m mainly excited about – at least, in my work – the increasing involvement and response we’ve had from the international community in terms of reaching out about these issues. I think it’s pretty important that we engage the international community more, and not just academics. Because these issues – things like nuclear weapons and the increasing capabilities of artificial intelligence – really will affect everybody. And they seem to be really underrepresented in mainstream media coverage as well.

So far, we’ve had pretty good responses just in terms of volunteers from many different countries around the world being interested in getting involved to help raise awareness in their respective communities, either through helping develop apps for us, or translation, or promoting just through social media these ideas in their little communities.

CONN: Many FLI members also participated in both local and global events and projects, like the following we’re about  to hear from Victoria, Richard, Lucas and Meia.

KRAKOVNA: The EAGX Oxford Conference was a fairly large conference. It was very well organized, and we had a panel there with Demis Hassabis, Nate Soares from MIRI, Murray Shanahan from Imperial, Toby Ord from FHI, and myself. I feel like overall, that conference did a good job of, for example, connecting the local EA community with the people at DeepMind, who are really thinking about AI safety concerns like Demis and also Sean Legassick, who also gave a talk about the ethics and impacts side of things. So I feel like that conference overall did a good job of connecting people who are thinking about these sorts of issues, which I think is always a great thing.  

MALLAH: I was involved in this endeavor with IEEE regarding autonomy and ethics in autonomous systems, sort of representing FLI’s positions on things like autonomous weapons and long-term AI safety. One thing that came out this year – just a few days ago, actually, due to this work from IEEE – is that the UN actually took the report pretty seriously, and it may have influenced their decision to take up the issue of autonomous weapons formally next year. That’s kind of heartening.

PERRY: A few different things that I really enjoyed doing were giving a few different talks at Duke and Boston College, and a local effective altruism conference. I’m also really excited about all the progress we’re making on our nuclear divestment application. So this is an application that will allow anyone to search their mutual fund and see whether or not their mutual funds have direct or indirect holdings in nuclear weapons-producing companies.

CHITA-TEGMARK:  So, a wonderful moment for me was at the conference organized by Yann LeCun in New York at NYU, when Daniel Kahneman, one of my thinker-heroes, asked a very important question that really left the whole audience in silence. He asked, “Does this make you happy? Would AI make you happy? Would the development of a human-level artificial intelligence make you happy?” I think that was one of the defining moments, and I was very happy to participate in this conference.

Later on, David Chalmers, another one of my thinker-heroes – this time, not the psychologist but the philosopher – organized another conference, again at NYU, trying to bring philosophers into this very important conversation about the development of artificial intelligence. And again, I felt there too, that FLI was able to contribute and bring in this perspective of the social sciences on this issue.

CONN: Now, with 2016 coming to an end, it’s time to turn our sites to 2017, and FLI is excited for this new year to be even more productive and beneficial.

TEGMARK: We at the Future of Life Institute are planning to focus primarily on artificial intelligence, and on reducing the risk of accidental nuclear war in various ways. We’re kicking off by having an international conference on artificial intelligence, and then we want to continue throughout the year providing really high-quality and easily accessible information on all these key topics, to help inform on what happens with climate change, with nuclear weapons, with lethal autonomous weapons, and so on.

And looking ahead here, I think it’s important right now – especially since a lot of people are very stressed out about the political situation in the world, about terrorism, and so on – to not ignore the positive trends and the glimmers of hope we can see as well.

CONN: As optimistic as FLI members are about 2017, we’re all also especially hopeful and curious to see what will happen with continued AI safety research.

AGUIRRE: I would say I’m looking forward to seeing in the next year more of the research that comes out, and really sort of delving into it myself, and understanding how the field of artificial intelligence and artificial intelligence safety is developing. And I’m very interested in this from the forecast and prediction standpoint.

I’m interested in trying to draw some of the AI community into really understanding how artificial intelligence is unfolding – in the short term and the medium term – as a way to understand, how long do we have? Is it, you know, if it’s really infinity, then let’s not worry about that so much, and spend a little bit more on nuclear weapons and global warming and biotech, because those are definitely happening. If human-level AI were 8 years away… honestly, I think we should be freaking out right now. And most people don’t believe that, I think most people are in the middle it seems, of thirty years or fifty years or something, which feels kind of comfortable. Although it’s not that long, really, on the big scheme of things. But I think it’s quite important to know now, which is it? How fast are these things, how long do we really have to think about all of the issues that FLI has been thinking about in AI? How long do we have before most jobs in industry and manufacturing are replaceable by a robot being slotted in for a human? That may be 5 years, it may be fifteen… It’s probably not fifty years at all. And having a good forecast on those good short-term questions I think also tells us what sort of things we have to be thinking about now.

And I’m interested in seeing how this massive AI safety community that’s started develops. It’s amazing to see centers kind of popping up like mushrooms after a rain all over and thinking about artificial intelligence safety. This partnership on AI between Google and Facebook and a number of other large companies getting started. So to see how those different individual centers will develop and how they interact with each other. Is there an overall consensus on where things should go? Or is it a bunch of different organizations doing their own thing? Where will governments come in on all of this? I think it will be interesting times. So I look forward to seeing what happens, and I will reserve judgement in terms of my optimism.

KRAKOVNA: I’m really looking forward to AI safety becoming even more mainstream, and even more of the really good researchers in AI giving it serious thought. Something that happened in the past year that I was really excited about, that I think is also pointing in this direction, is the research agenda that came out of Google Brain called “Concrete Problems in AI Safety.” And I think I’m looking forward to more things like that happening, where AI safety becomes sufficiently mainstream that people who are working in AI just feel inspired to do things like that and just think from their own perspectives: what are the important problems to solve in AI safety? And work on them.

I’m a believer in the portfolio approach with regards to AI safety research, where I think we need a lot of different research teams approaching the problems from different angles and making different assumptions, and hopefully some of them will make the right assumption. I think we are really moving in the direction in terms of more people working on these problems, and coming up with different ideas. And I look forward to seeing more of that in 2017. I think FLI can also help continue to make this happen.

MALLAH: So, we’re in the process of fostering additional collaboration among people in the AI safety space. And we will have more announcements about this early next year. We’re also working on resources to help people better visualize and better understand the space of AI safety work, and the opportunities there and the work that has been done. Because it’s actually quite a lot.

I’m also pretty excited about fostering continued theoretical work and practical work in making AI more robust and beneficial. The work in value alignment, for instance, is not something we see supported in mainstream AI research. And this is something that is pretty crucial to the way that advanced AIs will need to function. It won’t be very explicit instructions to them; they’ll have to be making decision based on what they think is right. And what is right? It’s something that… or even structuring the way to think about what is right requires some more research.

STANLEY: We’ve had pretty good success at FLI in the past few years helping to legitimize the field of AI safety. And I think it’s going to be important because AI is playing a large role in industry and there’s a lot of companies working on this, and not just in the US. So I think increasing international awareness about AI safety is going to be really important.

CHITA-TEGMARK: I believe that the AI community has raised some very important questions in 2016 regarding the impact of AI on society. I feel like 2017 should be the year to make progress on these questions, and actually research them and have some answers to them. For this, I think we need more social scientists – among people from other disciplines – to join this effort of really systematically investigating what would be the optimal impact of AI on people. I hope that in 2017 we will have more research initiatives, that we will attempt to systematically study other burning questions regarding the impact of AI on society. Some examples are: how can we ensure the psychological well-being for people while AI creates lots of displacement on the job market as many people predict. How do we optimize engagement with technology, and withdrawal from it also? Will some people be left behind, like the elderly or the economically disadvantaged? How will this affect them, and how will this affect society at large?

What about withdrawal from technology? What about satisfying our need for privacy? Will we be able to do that, or is the price of having more and more customized technologies and more and more personalization of the technologies we engage with… will that mean that we will have no privacy anymore, or that our expectations of privacy will be very seriously violated? I think these are some very important questions that I would love to get some answers to. And my wish, and also my resolution, for 2017 is to see more progress on these questions, and to hopefully also be part of this work and answering them.

PERRY: In 2017 I’m very interested in pursuing the landscape of different policy and principle recommendations from different groups regarding artificial intelligence. I’m also looking forward to expanding out nuclear divestment campaign by trying to introduce divestment to new universities, institutions, communities, and cities.

CONN: In fact, some experts believe nuclear weapons pose a greater threat now than at any time during our history.

TEGMARK: I personally feel that the greatest threat to the world in 2017 is one that the newspapers almost never write about. It’s not terrorist attacks, for example. It’s the small but horrible risk that the U.S. and Russia for some stupid reason get into an accidental nuclear war against each other. We have 14,000 nuclear weapons, and this war has almost happened many, many times. So, actually what’s quite remarkable and really gives a glimmer of hope is that – however people may feel about Putin and Trump – the fact is they are both signaling strongly that they are eager to get along better. And if that actually pans out and they manage to make some serious progress in nuclear arms reduction, that would make 2017 the best year for nuclear weapons we’ve had in a long, long time, reversing this trend of ever greater risks with ever more lethal weapons.

CONN: Some FLI members are also looking beyond nuclear weapons and artificial intelligence, as I learned when I asked Dave about other goals he hopes to accomplish with FLI this year.

STANLEY: Definitely having the volunteer team – particularly the international volunteers – continue to grow, and then scale things up. Right now, we have a fairly committed core of people who are helping out, and we think that they can start recruiting more people to help out in their little communities, and really making this stuff accessible. Not just to academics, but to everybody. And that’s also reflected in the types of people we have working for us as volunteers. They’re not just academics. We have programmers, linguists, people having just high school degrees all the way up to Ph.D.’s, so I think it’s pretty good that this varied group of people can get involved and contribute, and also reach out to other people they can relate to.

CONN: In addition to getting more people involved, Meia also pointed out that one of the best ways we can help ensure a positive future is to continue to offer people more informative content.

CHITA-TEGMARK: Another thing that I’m very excited about regarding our work here at the Future of Life Institute is this mission of empowering people to information. I think information is very powerful and can change the way people approach things: they can change their beliefs, their attitudes, and their behaviors as well. And by creating ways in which information can be readily distributed to the people, and with which they can engage very easily, I hope that we can create changes. For example, we’ve had a series of different apps regarding nuclear weapons that I think have contributed a lot to peoples knowledge and has brought this issue to the forefront of their thinking.

CONN: Yet as important as it is to highlight the existential risks we must address to keep humanity safe, perhaps it’s equally important to draw attention to the incredible hope we have for the future if we can solve these problems. Which is something both Richard and Lucas brought up for 2017.

MALLAH: I’m excited about trying to foster more positive visions of the future, so focusing on existential hope aspects of the future. Which are kind of the flip side of existential risks. So we’re looking at various ways of getting people to be creative about understanding some of the possibilities, and how to differentiate the paths between the risks and the benefits.

PERRY: Yeah, I’m also interested in creating and generating a lot more content that has to do with existential hope. Given the current global political climate, it’s all the more important to focus on how we can make the world better.

CONN: And on that note, I want to mention one of the most amazing things I discovered this past year. It had nothing to do with technology, and everything to do with people. Since starting at FLI, I’ve met countless individuals who are dedicating their lives to trying to make the world a better place. We may have a lot of problems to solve, but with so many groups focusing solely on solving them, I’m far more hopeful for the future. There are truly too many individuals that I’ve met this year to name them all, so instead, I’d like to provide a rather long list of groups and organizations I’ve had the pleasure to work with this year. A link to each group can be found at futureoflife.org/2016, and I encourage you to visit them all to learn more about the wonderful work they’re doing. In no particular order, they are:

Machine Intelligence Research Institute

Future of Humanity Institute

Global Catastrophic Risk Institute

Center for the Study of Existential Risk

Ploughshares Fund

Bulletin of Atomic Scientists

Open Philanthropy Project

Union of Concerned Scientists

The William Perry Project

ReThink Media

Don’t Bank on the Bomb

Federation of American Scientists

Massachusetts Peace Action

IEEE (Institute for Electrical and Electronics Engineers)

Center for Human-Compatible Artificial Intelligence

Center for Effective Altruism

Center for Applied Rationality

Foresight Institute

Leverhulme Center for the Future of Intelligence

Global Priorities Project

Association for the Advancement of Artificial Intelligence

International Joint Conference on Artificial Intelligence

Partnership on AI

The White House Office of Science and Technology Policy

The Future Society at Harvard Kennedy School

 

I couldn’t be more excited to see what 2017 holds in store for us, and all of us at FLI look forward to doing all we can to help create a safe and beneficial future for everyone. But to end on an even more optimistic note, I turn back to Max.

TEGMARK: Finally, I’d like – because I spend a lot of my time thinking about our universe – to remind everybody that we shouldn’t just be focused on the next election cycle. We have not decades, but billions of years of potentially awesome future for life, on Earth and far beyond. And it’s so important to not let ourselves get so distracted by our everyday little frustrations that we lose sight of these incredible opportunities that we all stand to gain from if we can get along, and focus, and collaborate, and use technology for good.

Artificial Photosynthesis: Can We Harness the Energy of the Sun as Well as Plants?

Click here to see this page in other languages : Russian 

In the early 1900s, the Italian chemist Giacomo Ciamician recognized that fossil fuel use was unsustainable. And like many of today’s environmentalists, he turned to nature for clues on developing renewable energy solutions, studying the chemistry of plants and their use of solar energy. He admired their unparalleled mastery of photochemical synthesis—the way they use light to synthesize energy from the most fundamental of substances—and how “they reverse the ordinary process of combustion.”

In photosynthesis, Ciamician realized, lay an entirely renewable process of energy creation. When sunlight reaches the surface of a green leaf, it sets off a reaction inside the leaf. Chloroplasts, energized by the light, trigger the production of chemical products—essentially sugars—which store the energy such that the plant can later access it for its biological needs. It is an entirely renewable process; the plant harvests the immense and constant supply of solar energy, absorbs carbon dioxide and water, and releases oxygen. There is no other waste.

If scientists could learn to imitate photosynthesis by providing concentrated carbon dioxide and suitable catalyzers, they could create fuels from solar energy. Ciamician was taken by the seeming simplicity of this solution. Inspired by small successes in chemical manipulation of plants, he wondered, “does it not seem that, with well-adapted systems of cultivation and timely intervention, we may succeed in causing plants to produce, in quantities much larger than the normal ones, the substances which are useful to our modern life?”

In 1912, Ciamician sounded the alarm about the unsustainable use of fossil fuels, and he exhorted the scientific community to explore artificially recreating photosynthesis. But little was done. A century later, however, in the midst of a climate crisis, and armed with improved technology and growing scientific knowledge, his vision reached a major breakthrough.

After more than ten years of research and experimentation, Peidong Yang, a chemist at UC Berkeley, successfully created the first photosynthetic biohybrid system (PBS) in April 2015. This first-generation PBS uses semiconductors and live bacteria to do the photosynthetic work that real leaves do—absorb solar energy and create a chemical product using water and carbon dioxide, while releasing oxygen—but it creates liquid fuels. The process is called artificial photosynthesis, and if the technology continues to improve, it may become the future of energy.

How Does This System Work?

Yang’s PBS can be thought of as a synthetic leaf. It is a one-square-inch tray that contains silicon semiconductors and living bacteria; what Yang calls a semiconductor-bacteria interface.

In order to initiate the process of artificial photosynthesis, Yang dips the tray of materials into water, pumps carbon dioxide into the water, and shines a solar light on it. As the semiconductors harvest solar energy, they generate charges to carry out reactions within the solution. The bacteria take electrons from the semiconductors and use them to transform, or reduce, carbon dioxide molecules and create liquid fuels. In the meantime, water is oxidized on the surface of another semiconductor to release oxygen. After several hours or several days of this process, the chemists can collect the product.

With this first-generation system, Yang successfully produced butanol, acetate, polymers, and pharmaceutical precursors, fulfilling Ciamician’s once-far-fetched vision of imitating plants to create the fuels that we need. This PBS achieved a solar-to-chemical conversion efficiency of 0.38%, which is comparable to the conversion efficiency in a natural, green leaf.

first-g-ap

A diagram of the first-generation artificial photosynthesis, with its four main steps.

Describing his research, Yang says, “Our system has the potential to fundamentally change the chemical and oil industry in that we can produce chemicals and fuels in a totally renewable way, rather than extracting them from deep below the ground.”

If Yang’s system can be successfully scaled up, businesses could build artificial forests that produce the fuel for our cars, planes, and power plants by following the same laws and processes that natural forests follow. Since artificial photosynthesis would absorb and reduce carbon dioxide in order to create fuels, we could continue to use liquid fuel without destroying the environment or warming the planet.

However, in order to ensure that artificial photosynthesis can reliably produce our fuels in the future, it has to be better than nature, as Ciamician foresaw. Our need for renewable energy is urgent, and Yang’s model must be able to provide energy on a global scale if it is to eventually replace fossil fuels.

Recent Developments in Yang’s Artificial Photosynthesis

Since the major breakthrough in April 2015, Yang has continued to improve his system in hopes of eventually producing fuels that are commercially viable, efficient, and durable.

In August 2015, Yang and his team tested his system with a different type of bacteria. The method is the same, except instead of electrons, the bacteria use molecular hydrogen from water molecules to reduce carbon dioxide and create methane, the primary component of natural gas. This process is projected to have an impressive conversion efficiency of 10%, which is much higher than the conversion efficiency in natural leaves.

A conversion efficiency of 10% could potentially be commercially viable, but since methane is a gas it is more difficult to use than liquid fuels such as butanol, which can be transferred through pipes. Overall, this new generation of PBS needs to be designed and assembled in order to achieve a solar-to-liquid-fuel efficiency above 10%.

second-g-ap

A diagram of this second-generation PBS that produces methane.

In December 2015, Yang advanced his system further by making the remarkable discovery that certain bacteria could grow the semiconductors by themselves. This development short-circuited the two-step process of growing the nanowires and then culturing the bacteria in the nanowires. The improved semiconductor-bacteria interface could potentially be more efficient in producing acetate, as well as other chemicals and fuels, according to Yang. And in terms of scaling up, it has the greatest potential.

third-g-ap

A diagram of this third-generation PBS that produces acetate.

In the past few weeks, Yang made yet another important breakthrough in elucidating the electron transfer mechanism between the semiconductor-bacteria interface. This sort of fundamental understanding of the charge transfer at the interface will provide critical insights for the designing of the next generation PBS with better efficiency and durability. He will be releasing the details of this breakthrough shortly.

Despite these important breakthroughs and modifications to the PBS, Yang clarifies, “the physics of the semiconductor-bacteria interface for the solar driven carbon dioxide reduction is now established.” As long as he has an effective semiconductor that absorbs solar energy and feeds electrons to the bacteria, the photosynthetic function will initiate, and the remarkable process of artificial photosynthesis will continue to produce liquid fuels.

Why This Solar Power Is Unique

Peter Forbes, a science writer and the author of Nanoscience: Giants of the Infinitesimal, admires Yang’s work in creating this system. He writes, “It’s a brilliant synthesis: semiconductors are the most efficient light harvesters, and biological systems are the best scavengers of CO2.”

Yang’s artificial photosynthesis only relies on solar energy. But it creates a more useable source of energy than solar panels, which are currently the most popular and commercially viable form of solar power. While the semiconductors in solar panels absorb solar energy and convert it into electricity, in artificial photosynthesis, the semiconductors absorb solar energy and store it in “the carbon-carbon bond or the carbon-hydrogen bond of liquid fuels like methane or butanol.”

This difference is crucial. The electricity generated from solar panels simply cannot meet our diverse energy needs, but these renewable liquid fuels and natural gases can. Unlike solar panels, Yang’s PBS absorbs and breaks down carbon dioxide, releases oxygen, and creates a renewable fuel that can be collected and used. With artificial photosynthesis creating our fuels, driving cars and operating machinery becomes much less harmful. As Katherine Bourzac phrases nicely, “This is one of the best attempts yet to realize the simple equation: sun + water + carbon dioxide = sustainable fuel.”

The Future of Artificial Photosynthesis

Yang’s PBS has been advancing rapidly, but he still has work to do before the technology can be considered commercially viable. Despite encouraging conversion efficiencies, especially with methane, the PBS is not durable enough or cost-effective enough to be marketable.

In order to improve this system, Yang and his team are working to figure out how to replace bacteria with synthetic catalysts. So far, bacteria have proven to be the most efficient catalysts, and they also have high selectivity—that is, they can create a variety of useful compounds such as butanol, acetate, polymers and methane. But since bacteria live and die, they are less durable than a synthetic catalyst and less reliable if this technology is scaled up.

Yang has been testing PBS’s with live bacteria and synthetic catalysts in parallel systems in order to discover which type works best. “From the point of view of efficiency and selectivity of the final product, the bacteria approach is winning,” Yang says, “but if down the road we can find a synthetic catalyst that can produce methane and butanol with similar selectivity, then that is the ultimate solution.” Such a system would give us the ideal fuels and the most durable semiconductor-catalyst interface that can be reliably scaled up.

Another concern is that, unlike natural photosynthesis, artificial photosynthesis requires concentrated carbon dioxide to function. This is easy to do in the lab, but if artificial photosynthesis is scaled up, Yang will have to find a feasible way of supplying concentrated carbon dioxide to the PBS. Peter Forbes argues that Yang’s artificial photosynthesis could be “coupled with carbon-capture technology to pull COfrom smokestack emissions and convert it into fuel”. If this could be done, artificial photosynthesis would contribute to a carbon-neutral future by consuming our carbon emissions and releasing oxygen. This is not the focus of Yang’s research, but it is an integral piece of the puzzle that other scientists must provide if artificial photosynthesis is to supply the fuels we need on a large scale.

When Giacomo Ciamician considered the future of artificial photosynthesis, he imagined a future of abundant energy where humans could master the “photochemical processes that hitherto have been the guarded secret of the plants…to make them bear even more abundant fruit than nature, for nature is not in a hurry and mankind is.” And while the rush was not apparent to scientists in 1912, it is clear now, in 2016.

Peidong Yang has already created a system of artificial photosynthesis that out-produces nature. If he continues to increase the efficiency and durability of his PBS, artificial photosynthesis could revolutionize our energy use and serve as a sustainable model for generations to come. As long as the sun shines, artificial photosynthesis can produce fuels and consume waste. And in this future of artificial photosynthesis, the world would be able to grow and use fuels freely; knowing that the same, natural process that created them would recycle the carbon at the other end.

Yang shares this hope for the future. He explains, “Our vision of a cyborgian evolution—biology augmented with inorganic materials—may bring the PBS concept to full fruition, selectively combining the best of both worlds, and providing society with a renewable solution to solve the energy problem and mitigate climate change.”

If you would like to learn more about Peidong Yang’s research, please visit his website at http://nanowires.berkeley.edu/.

Developing Countries Can’t Afford Climate Change

Click here to see this page in other languages: Russian

Developing countries currently cannot sustain themselves, let alone grow, without relying heavily on fossil fuels. Global warming typically takes a back seat to feeding, housing, and employing these countries’ citizens. Yet the weather fluctuations and consequences of climate change are already impacting food growth in many of these countries. Is there a solution?

Developing Countries Need Fossil Fuels

Fossil fuels are still the cheapest, most reliable energy resources available. When a developing country wants to build a functional economic system and end rampant poverty, it turns to fossil fuels.

India, for example, is home to one-third of the world’s 1.2 billion citizens living in poverty. That’s 400 million people in one country without sufficient food or shelter (for comparison, the entire U.S. population is roughly 323 million people). India hopes to transition to renewable energy as its economy grows, but the investment needed to meet its renewable energy goals “is equivalent to over four times the country’s annual defense spending, and over ten times the country’s annual spending on health and education.”

Unless something changes, developing countries like India cannot fight climate change and provide for their citizens. In fact, developing countries will only accelerate global warming as their economies grow because they cannot afford alternatives. Wealthy countries cannot afford to ignore the impact of these growing, developing countries.

The Link Between Economic Growth and CO2

According to a World Bank report, “poor and middle-income countries already account for just over half of total carbon emissions.” And this percentage will only rise as developing countries grow. Achieving a global society in which all citizens earn a living wage and climate catastrophe is averted requires breaking the link between economic growth and increasing carbon emissions in developing countries.

Today, most developing countries that decrease their poverty rates also have increased rates of carbon emissions. In East Asia and the Pacific, the number of people living in extreme poverty declined from 1.1 billion to 161 million between 1981 and 2011—an 85% decrease. In this same time period, the amount of carbon dioxide per capita rose from 2.1 tons per capita to 5.9 tons per capita—a 185% increase.

South Asia saw similar changes during this time frame. As the number of people living in extreme poverty decreased by 30%, the amount of carbon dioxide increased by 204%.

In Sub-Saharan Africa, the number of people living in poverty increased by 98% in this thirty-year span, while carbon dioxide per capita decreased by 17%. Given the current energy situation, if sub-Saharan Africans are to escape extreme poverty, they will have to increase their carbon use—unless developed countries step in to offer clean alternatives.

Carbon Emissions Rate Vs. Total

Many wealthier countries have been researching alternative forms of energy for decades. And that work may be starting to pay off.

New data shows that, since the year 2000, 21 developed countries have reduced annual greenhouse gas emissions while simultaneously growing their economies. Moreover, this isn’t all related to a drop in the industrial sector. Uzbekistan, Bulgaria, Switzerland, and the Czech Republic demonstrated that countries do not need to shrink their industrial sectors to break the link between economic growth and increased greenhouse gas emissions.

Most importantly, global carbon emissions stalled from 2014 to 2015 as the global economy grew.

But is this rate of global decoupling fast enough to keep the planet from warming another two degrees Celsius? When emissions stall at 32.1 billion metric tons for two years, that’s still 64.2 billion metric tons of carbon being pumped into the atmosphere over two years.

The carbon emissions rate might fall, but the total continues to grow enormously. A sharp decline in carbon emissions is necessary to keep the planet at a safe global temperature. At the 2015 Paris Climate Conference, the United Nations concluded that in order to keep global temperatures from rising another two degrees Celsius, global carbon emissions “must fall to net zero in the second half of the century.”

In order to encourage this, the Paris agreement included measures to ensure that wealthy countries finance developing countries “with respect to both mitigation and adaptation.” For mitigation, countries are expected to abide by their pledges to reduce emissions and use more renewable energy, and for adaptation, the deal sets a global goal for “enhancing adaptive capacity, strengthening resilience and reducing vulnerability to climate change.”

Incentivizing R&D

One way wealthy countries can benefit both themselves and developing countries is through research and development. As wealthier countries develop cheaper forms of alternative energy, developing countries can take advantage of the new technologies. Wealthy countries can also help subsidize renewable energy for countries dealing with higher rates of poverty.

Yet, as of 2014, wealthy countries had invested very little in this process, providing only 0.2% of developing countries’ GDP for adaptation and mitigation. Moreover, a 2015 paper from the IMF revealed that while we spend $100 billion per year subsidizing renewable energy, we spend an estimated $5.3 trillion subsidizing fossil fuels. This fossil fuel subsidy includes “the uncompensated costs of air pollution, congestion and global warming.”

Such a huge disparity indicates that wealthy countries either need stronger incentives or stronger legal obligations to shift this fossil fuel money towards renewable energy. The Paris agreement intends to strengthen legal obligations, but its language is vague, and it lacks details that would ensure wealthy countries follow through with their responsibilities.

However, despite the shortcomings of legal obligations, monetary incentives do exist. India, for example, wants to vastly increase its solar power capacity to address this global threat. They need $100 billion to fund this expansion, which could spell a huge opportunity for U.S. banks, according to Raymond Vickery, an expert on U.S-India economic ties. This would be a boon for the U.S. economy, and it would set an important precedent for other wealthy countries to assist and invest in developing countries.

However, global leaders need to move quickly. The effects of global warming already threaten the world and the economies of developing countries, especially India.

Global Impact of Climate Change

India relies on the monsoon cycle to water crops and maintain its “nearly $370 billion agricultural sector and hundreds of millions of jobs.” Yet as the Indian Ocean has warmed, the monsoon cycle has become unreliable, resulting in massive droughts and dying crops.

Across the globe, scientists expect developing countries such as India to be hit hardest by rising temperatures and changes in rainfall. Furthermore, these countries with limited financial resources and weak infrastructure will struggle to adapt and sustain their economic growth in the face of changing climate. Nicholas Stern predicts that a two-degree rise in temperature would cost about 1% of world GDP. But the World Bank estimates that it would cost India 5% of their GDP.

Moreover, changes such as global warming act as “threat multipliers” because they increase the likelihood of other existential threats. In India, increased carbon dioxide emissions have contributed to warmer temperatures, which have triggered extensive droughts and increased poverty. But the problems don’t end here. Higher levels of hunger and poverty can magnify political tensions, potentially leading to conflict and even nuclear war. India and Pakistan both have nuclear weapons—if drought expands and cripples their economies, violence can more easily erupt.

Alternatively, wealthy nations could capitalize on investment opportunities in developing countries. In doing so, their own economies will benefit while simultaneously aiding the effort to reach net zero carbon emissions.

Global warming is, by definition, a global crisis. Mitigating this threat will require global cooperation and global solutions.

Op-ed: Being Alarmed Is Not the Same as Being an Alarmist

When the evidence clearly suggests that we’re heading toward a catastrophe, scientists shouldn’t hesitate to make their feelings known to the public. So, at what point should scientists begin to publicly worry about the environment?

Scientists are trained to report their findings in a disinterested manner. The aim is to be as objective as possible, and this means bracketing one’s feelings in favor of the facts.

But what happens when the evidence suggests that humanity is racing towards a global, irreversible disaster? What happens when the results of scientific inquiry clearly warrant activism in favor of a particular law or policy?

Once in a while, scientists do express their personal thoughts about the results of scientific research. For example, in 2012, a geophysics researcher from the University of San Diego, Brad Werner, gave a presentation at the large, annual American Geophysical Union conference. His talk was titled “Is Earth F**cked?,” and as he told a reporter for iO9 afterwards, the answer is “more or less.”

Two years later, after a group of scientists found “vast methane plumes escaping from the seafloor,” the glaciologist Jason Box echoed Werner’s pessimism, tweeting: “If even a small fraction of Arctic sea floor carbon is released to the atmosphere, we’re f ’d.”

Rewriting Records

There’s good reason for scientists to be honest and open about the implications of their research. The environmental situation today really is dire.

According to Gavin Schmidt of NASA’s Goddard Institute of Space Studies, there’s a 99% probability that 2016 will become the hottest year on record, surpassing the previous record set by 2015, which itself surpassed the previous record set by 2014. In fact, the hottest 16 years have all occurred since 2000, with only a single exception (1998).

Even more, last June was the 14th consecutive month to set a temperature record. And in July, Kuwait experienced the highest temperature ever recorded in the Eastern hemisphere, with temperatures reaching 129.2 degrees (F). In nearby Iraq, the mercury peaked at 129.0 degrees. As Jason Samenow notes, “It’s also possible that [the] 129.2-degree reading matches the hottest ever reliably measured anywhere in the world” (italics added).

Meanwhile, the amount of carbon dioxide in the atmosphere continues to climb at a meteoric rate. Before the Industrial Revolution, the concentration was 280 parts per million (ppm). But recent years have seen it surpass 400 ppm. Initially, this has occurred for only  part of the year because of the seasonal life cycles of plants, which remove atmospheric carbon dioxide.

Last year, though, the average concentration of carbon dioxide exceeded 400 ppm for the first time ever. And scientists are now saying that “carbon dioxide will never fall below 400 ppm this year, nor the next, nor the next.” In other words, no human alive today will ever again experience an atmosphere with less than 400 ppm. As the meteorologist Richard Betts puts it, “These numbers are … a reminder of the long-term effects we’re having on the system.”

Worrisome Weather

Along with record-breaking temperatures and changes to atmospheric chemistry, recent months have seen many extreme weather events. This is in part due to the 2015-2016 El Niño climate cycle, which has been “probably the most powerful in the last 100 years.”

But the more fundamental driver of extreme weather is climate change. Research shows that climate change will result in more severe floods, droughts, heat waves, and hurricanes. According to a study conducted by scientists at NASA, Cornell, and Columbia universities, we should expect “megadroughts” in the US lasting decades.

Another study predicts that certain regions could experience heat waves so scorching that “one would overheat even if they were naked in the shade, soaking wet and standing in front of a large fan.” Yet another report found that lightning strikes will increase by 50% this century.

Until recently, it was difficult for climatologists to link particular instances of extreme weather with human-caused changes to the climate. Asking whether climate change caused event X is like asking whether smoking caused Jack’s lung cancer. A doctor can explain that Jack-the-smoker is statistically more likely to get cancer than Jack-the-nonsmoker. However, a direct link is indiscernible.

But this situation is changing, as a recent report from the National Academy of Sciences affirms. Scientists are increasingly able to connect climate change with particular instances of extreme weather. And the results are worrisome.

For example, a study from last year links climate change to the 2007-2010 Syrian drought. This record-breaking event fueled the Syrian civil war by instigating a large migration of farmers into Syria’s urban centers. Furthermore, this conflict gave rise to terrorist groups like the Islamic State and Jabhat al-Nusra (al-Qaeda’s Syrian affiliate). In other words, one can trace an unbroken series of causes from climate change to the Syrian civil war to terrorism.

Panicking in Public

Climate change is a clear and present danger. Scientists don’t debate about whether it’s occurring. Nor do they disagree that its consequences will be global, catastrophic, and irreversible. According to the World Bank, “the global community is not prepared for a swift increase in climate change-related natural disasters — such as floods and droughts — which will put 1.3 billion people at risk by 2050.”

Given the high stakes and the well-established science, scientists should be waving their arms and shouting, “The situation is urgent! We must act now! The future of civilization depends upon it!” In the process, they should take care to distinguish between the distinct attitudes of “being alarmed” and “being an alarmist,” which many pundits, politicians, and journalists often conflate. The first occurs when one responds proportionally to the best available evidence. The second is what happens when one’s fear and anxiety go beyond the evidence.

Being alarmed is the appropriate response to an alarming situation, and the situation today really is alarming.

The ongoing catastrophe of climate change is not out of our control. But if we don’t act soon, Werner could be right that Earth is, well, in bad shape.

Note from FLI: Among our objectives is to inspire discussion and a sharing of ideas. As such, we post op-eds that we believe will help spur discussion within our community. Op-eds do not necessarily represent FLI’s opinions or views.

Podcast: Could an Earthquake Destroy Humanity?

Earthquakes as Existential Risks

Earthquakes are not typically considered existential or even global catastrophic risks, and for good reason: they’re localized events. While they may be devastating to the local community, rarely do they impact the whole world. But is there some way an earthquake could become an existential or catastrophic risk? Could a single earthquake put all of humanity at risk? In our increasingly connected world, could an earthquake sufficiently exacerbate a biotech, nuclear or economic hazard, triggering a cascading set of circumstances that could lead to the downfall of modern society?

Seth Baum of the Global Catastrophic Risk Institute and Ariel Conn of FLI consider extreme earthquake scenarios to figure out if there’s any way such a risk is remotely plausible. This podcast was produced in a similar vein to Myth Busters and xkcd’s What If series.

We only consider a few scenarios in this podcast, but we’d love to hear from other people. Do you have ideas for an extreme situation that could transform a locally devastating earthquake into a global calamity?

This episode features insight from seismologist Martin Chapman of Virginia Tech.

Note from FLI: Among our objectives is to inspire discussion and a sharing of ideas. As such, we interview researchers and thought leaders who we believe will help spur discussion within our community. The interviews do not necessarily represent FLI’s opinions or views.

Op-ed: Climate Change Is the Most Urgent Existential Risk

Climate change and biodiversity loss may pose the most immediate and important threat to human survival given their indirect effects on other risk scenarios.

Humanity faces a number of formidable challenges this century. Threats to our collective survival stem from asteroids and comets, supervolcanoes, global pandemics, climate change, biodiversity loss, nuclear weapons, biotechnology, synthetic biology, nanotechnology, and artificial superintelligence.

With such threats in mind, an informal survey conducted by the Future of Humanity Institute placed the probability of human extinction this century at 19%. To put this in perspective, it means that the average American is more than a thousand times more likely to die in a human extinction event than a plane crash.*

So, given limited resources, which risks should we prioritize? Many intellectual leaders, including Elon Musk, Stephen Hawking, and Bill Gates, have suggested that artificial superintelligence constitutes one of the most significant risks to humanity. And this may be correct in the long-term. But I would argue that two other risks, namely climate change and biodiveristy loss, should take priority right now over every other known threat.

Why? Because these ongoing catastrophes in slow-motion will frame our existential predicament on Earth not just for the rest of this century, but for literally thousands of years to come. As such, they have the capacity to raise or lower the probability of other risks scenarios unfolding.

Multiplying Threats

Ask yourself the following: are wars more or less likely in a world marked by extreme weather events, megadroughts, food supply disruptions, and sea-level rise? Are terrorist attacks more or less likely in a world beset by the collapse of global ecosystems, agricultural failures, economic uncertainty, and political instability?

Both government officials and scientists agree that the answer is “more likely.” For example, the current Director of the CIA, John Brennan, recently identified “the impact of climate change” as one of the “deeper causes of this rising instability” in countries like Syria, Iraq, Yemen, Libya, and Ukraine. Similarly, the former Secretary of Defense, Chuck Hagel, has described climate change as a “threat multiplier” with “the potential to exacerbate many of the challenges we are dealing with today — from infectious disease to terrorism.”

The Department of Defense has also affirmed a connection. In a 2015 report, it states, “Global climate change will aggravate problems such as poverty, social tensions, environmental degradation, ineffectual leadership and weak political institutions that threaten stability in a number of countries.”

Scientific studies have further shown a connection between the environmental crisis and violent conflicts. For example, a 2015 paper in the Proceedings of the National Academy of Sciences argues that climate change was a causal factor behind the record-breaking 2007-2010 drought in Syria. This drought led to a mass migration of farmers into urban centers, which fueled the 2011 Syrian civil war. Some observers, including myself, have suggested that this struggle could be the beginning of World War III, given the complex tangle of international involvement and overlapping interests.

The study’s conclusion is also significant because the Syrian civil war was the Petri dish in which the Islamic State consolidated its forces, later emerging as the largest and most powerful terrorist organization in human history.

A Perfect Storm

The point is that climate change and biodiversity loss could very easily push societies to the brink of collapse. This will exacerbate existing geopolitical tensions and introduce entirely new power struggles between state and nonstate actors. At the same time, advanced technologies will very likely become increasingly powerful and accessible. As I’ve written elsewhere, the malicious agents of the future will have bulldozers rather than shovels to dig mass graves for their enemies.

The result is a perfect storm of more conflicts in the world along with unprecedentedly dangerous weapons.

If the conversation were to end here, we’d have ample reason for placing climate change and biodiversity loss at the top of our priority lists. But there are other reasons they ought to be considered urgent threats. I would argue that they could make humanity more vulnerable to a catastrophe involving superintelligence and even asteroids.

The basic reasoning is the same for both cases. Consider superintelligence first. Programming a superintelligence whose values align with ours is a formidable task even in stable circumstances. As Nick Bostrom argues in his 2014 book, we should recognize the “default outcome” of superintelligence to be “doom.”

Now imagine trying to solve these problems amidst a rising tide of interstate wars, civil unrest, terrorist attacks, and other tragedies? The societal stress caused by climate change and biodiversity loss will almost certainly compromise important conditions for creating friendly AI, such as sufficient funding, academic programs to train new scientists, conferences on AI, peer-reviewed journal publications, and communication/collaboration between experts of different fields, such as computer science and ethics.

It could even make an “AI arms race” more likely, thereby raising the probability of a malevolent superintelligence being created either on purpose or by mistake.

Similarly, imagine that astronomers discover a behemoth asteroid barreling toward Earth. Will designing, building, and launching a spacecraft to divert the assassin past our planet be easier or more difficult in a world preoccupied with other survival issues?

In a relatively peaceful world, one could imagine an asteroid actually bringing humanity together by directing our attention toward a common threat. But if the “conflict multipliers” of climate change and biodiversity loss have already catapulted civilization into chaos and turmoil, I strongly suspect that humanity will become more, rather than less, susceptible to dangers of this sort.

Context Risks

We can describe the dual threats of climate change and biodiversity loss as “context risks.” Neither is likely to directly cause the extinction of our species. But both will define the context in which civilization confronts all the other threats before us. In this way, they could indirectly contribute to the overall danger of annihilation — and this worrisome effect could be significant.

For example, according to the Intergovernmental Panel on Climate Change, the effects of climate change will be “severe,” “pervasive,” and “irreversible.” Or, as a 2016 study published in Nature and authored by over twenty scientists puts it, the consequences of climate change “will extend longer than the entire history of human civilization thus far.”

Furthermore, a recent article in Science Advances confirms that humanity has already escorted the biosphere into the sixth mass extinction event in life’s 3.8 billion year history on Earth. Yet another study suggests that we could be approaching a sudden, irreversible, catastrophic collapse of the global ecosystem. If this were to occur, it could result in “widespread social unrest, economic instability and loss of human life.”

Given the potential for environmental degradation to elevate the likelihood of nuclear wars, nuclear terrorism, engineered pandemics, a superintelligence takeover, and perhaps even an impact winter, it ought to take precedence over all other risk concerns — at least in the near-term. Let’s make sure we get our priorities straight.

* How did I calculate this? First, the average American’s lifetime chance of dying in an “Air and space transport accident” was 1 in 9737 as of 2013, according to the Insurance Information Institute. The US life expectancy is currently 78.74 years, which we can round up to 80 years for simplicity. Second, the informal Future of Humanity Institute (FHI) survey puts the probability of human extinction this century at 19%. Assuming independence, it follows that the probability of human extinction in an 80-year period (the US life expectancy) is 15.5%. Finally, the last step is to figure out the difference between the 15.5% figure and the 1 in 9737 statistic. To do this, divide .155 by 1/9737. This gives 1509.235. And from here we can conclude that, if the FHI survey is accurate, “the average American is more than a thousand times more likely to die in a human extinction event than a plane crash.”

Congress Subpoenas Climate Scientists in Effort to Hamper ExxonMobil Fraud Investigation

ExxonMobil executives may have intentionally misled the public about climate change – for decades. And the House Science Committee just hampered legal efforts to learn more about ExxonMobil’s actions by subpoenaing the nonprofit scientists who sought to find out what the fossil fuel giant knew and when.

For 40 years, tobacco companies intentionally misled consumers to believe that smoking wasn’t harmful. Now it appears that many in the fossil fuel industry may have applied similarly deceptive tactics – and for just as long – to confuse the public about the dangers of climate change.

Investigative research by nonprofit groups like InsideClimate News and the Union of Concerned Scientists (UCS) have turned up evidence that ExxonMobil may have known about the hazards of fossil-fuel driven climate change back in the 1970s. However, rather than informing the public or taking steps to reduce such risks, documents indicate that ExxonMobil leadership chose to cover up their findings and instead convince the public that climate science couldn’t be trusted.

As a result of these findings, the Attorneys General (AGs) from New York and Massachusetts launched a legal investigation to determine if ExxonMobil committed fraud, including subpoenaing the company for more information. That’s when the House Science, Space and Technology Committee Chairman Lamar Smith stepped in.

Chairman Smith, under powerful new House rules, unilaterally subpoenaed not just the AGs, but also many of the nonprofits involved in the ExxonMobil investigation, including groups like the UCS. Smith and other House representatives argue that they’re merely supporting ExxonMobil’s rights to free speech and to form opinions based on scientific research.

However, no one is targeting ExxonMobil for expressing an opinion. The Attorneys General and the nonprofits are investigating what may have been intentional fraud.

In a public statement, Ken Kimmell, president of the Union of Concerned Scientists said:

“We do not accept Chairman Smith’s premise that fraud, if committed by ExxonMobil, is protected by the First Amendment. It’s beyond ironic for Chairman Smith to violate our actual free speech rights in the name of protecting ExxonMobil’s supposed right to misrepresent the work of its own scientists and deceive shareholders and the public. […]

“Smith is misusing the House Science Committee’s subpoena power in a way that should concern everyone across the political spectrum. Today, the target is UCS and others concerned about climate change. But if these kinds of subpoenas are allowed, who will be next and on what basis?”

In fact, Chairman Smith also subpoenaed climate scientists at the National Ocean and Atmospheric Administration (NOAA) in the fall of 2015 and again earlier this year. UCS representatives are referring to this as a blatant “abuse of power” on the part of the government and ExxonMobil.

Gretchen Goldman, a lead analyst for UCS, wrote: “Abuse of power is when a company exploits its vast political network to squash policies that would address climate change.”

The complete list of nonprofits subpoenaed by Chairman Smith includes: 350.org, the Climate Accountability Institute, the Climate Reality Project, Greenpeace, Pawa Law Group PC, the Rockefeller Brothers Fund, the Rockefeller Family Fund, and the Union of Concerned Scientists.

Editorial note:

At FLI, we strive to remain nonpartisan and apolitical. Our goal — to ensure a bright future for humanity — clearly spans the political spectrum. However, we cannot, in good conscience, stand back and simply witness this political attack on science in silence. To understand and mitigate climate change, we need scientific research. We need political leaders to let scientists do their jobs without intimidation.

The Problem with Brexit: 21st Century Challenges Require International Cooperation

Retreating from international institutions and cooperation will handicap humanity as we tackle our greatest problems.

The UK’s referendum in favor of leaving the EU and the rise of nationalist ideologies in the US and Europe is worrying on multiple fronts. Nationalism espoused by the likes of Donald Trump (U.S.), Nigel Farage (U.K.), Marine Le Pen (France), and Heinz-Christian Strache (Austria) may lead to a resurgence of some of the worst problems of the first half of 20th century. These leaders are calling for policies that would constrain trade and growth, encourage domestic xenophobia, and increase rivalries and suspicion between countries.

Even more worrying, however, is the bigger picture. In the 21st century, our greatest challenges will require global solutions. Retreating from international institutions and cooperation will handicap humanity’s ability to address our most pressing upcoming challenges.

The Nuclear Age

Many of the challenges of the 20th century – issues of public health, urbanization, and economic and educational opportunity – were national problems that could be dealt with at the national level. July 16th, 1945 marked a significant turning point. On that day, American scientists tested the first nuclear weapon in the New Mexican desert. For the first time in history, individual human beings had within their power a technology capable of destroying all of humanity.

Thus, nuclear weapons became the first truly global problem. Weapons with such a destructive force were of interest to every nation and person on the planet. Only international cooperation could produce a solution.

Despite a dangerous arms race between the US and the Soviet Union — including a history of close calls — humanity survived 70 years without a catastrophic global nuclear war. This was in large part due to international institutions and agreements that discouraged wars and further proliferation.

But what if we replayed the Cold War without the U.N. mediating disputes between nuclear adversaries? And without the bitter taste of the Second World War fresh in the minds of all who participated? Would we still have the same benign outcome?

We cannot say what such a revisionist history would look like, but the chances of a catastrophic outcome would surely be higher.

21st Century Challenges

The 21st century will only bring more challenges that are global in scope, requiring more international solutions. Climate change by definition requires a global solution since carbon emissions will lead to global warming regardless of which countries emit them.

In addition, continued development of new powerful technologies — such as artificial intelligence, biotechnologies, and nanotechnologies — will put increasingly large power in the hands of the people who develop and control them. These technologies have the potential to improve the human condition and solve some of our biggest problems. Yet they also have the potential to cause tremendous damage if misused.

Whether through accident, miscalculation, or madness, misuse of these powerful technologies could pose a catastrophic or even existential risk. If a Cold-War-style arms race for new technologies occurs, it is only a matter of time before a close call becomes a direct hit.

Working Together

As President Obama said in his speech at Hiroshima, “Technological progress without an equivalent progress in human institutions can doom us.”

Over the next century, technological progress can greatly improve the human experience. To ensure a positive future, humanity must find the wisdom to handle the increasingly powerful technologies that it is likely to produce and to address the global challenges that are likely to arise.

Experts have blamed the resurgence of nationalism on anxieties over globalization, multiculturalism, and terrorism. Whatever anxieties there may be, we live in a global world where our greatest challenges are increasingly global, and we need global solutions. If we resist international cooperation, we will battle these challenges with one, perhaps both, arms tied behind our back.

Humanity must learn to work together to tackle the global challenges we face. Now is the time to strengthen international institutions, not retreat from them.