US Government Releases Its Latest Climate Assessment, Demands Immediate Action

At the end of last week, amidst the flurry of holiday shopping, the White House quietly released Volume II of the Fourth National Climate Assessment (NCA4). The comprehensive report, which was compiled by the United States Global Change Research Program (USGCRP), is the culmination of decades of environmental research conducted by scientists from 13 different federal agencies. The scope of the work is truly striking, representing more than 300 authors and encompassing thousands of scientific studies.

Unfortunately, the report is also rather grim.

If climate change continues unabated, the assessment asserts that it will cost the U.S. economy hundreds of billions a year by the close of the century — causing some $155 billion in annual damages to labor and another $118 billion in damages to coastal property. In fact, the report notes that, unless we immediately launch “substantial and sustained global mitigation and regional adaptation efforts,” the impact on the agricultural sector alone will reach billions of dollars in losses by the middle of the century.

Notably, the NCA4 authors emphasize that these aren’t just warnings for future generations, pointing to several areas of the United States that are already grappling with the high economic cost of climate change. For example, a powerful heatwave that struck the Northeast left local fisheries devastated, and similar events in Alaska have dramatically slashed fishing quotas for certain stocks. Meanwhile, human activity is exacerbating Florida’s red tide, killing fish populations along the southwest coast.

Of course, the economy won’t be the only thing that suffers.

According to the assessment, climate change is increasingly threatening the health and well-being of the American people, and emission reduction efforts could ultimately save thousands of lives. Young children, pregnant women, and aging populations are identified as most at risk; however, the authors note that waterborne infectious diseases and global food shortages threaten all populations.

As with the economic impact, the toll on human health is already visible. For starters, air pollution is driving a rise in the number of deaths related to heart and lung problems. Asthma diagnoses have increased, and rising temperatures are causing a surge in heatstroke and other heat-related illnesses. And the report makes it clear that the full extent of the risk extends well beyond either the economy or human health, plainly stating that climate change threatens all life on our planet.

Ultimately, the authors emphasize the immediacy of the issue, noting that without immediate action, no system will be left untouched:

“Climate change affects the natural, built, and social systems we rely on individually and through their connections to one another….extreme weather and climate-related impacts on one system can result in increased risks or failures in other critical systems, including water resources, food production and distribution, energy and transportation, public health, international trade, and national security. The full extent of climate change risks to interconnected systems, many of which span regional and national boundaries, is often greater than the sum of risks to individual sectors.”

Yet, the picture painted by the NCA4 assessment is not entirely bleak. The report suggests that, with a concerted and sustained effort, the most dire damage can be undone and ultimate catastrophe averted. The authors note that this will require international cooperation centered on a dramatic reduction in global carbon dioxide emissions.

The 2015 Paris Agreement, in which 195 countries put forth emission reduction pledges, represented a landmark in international effort to curtail global warming. The agreement was designed to cap warming at 2 degrees Celsius, a limit scientists then believed would prevent the most severe and irreversible effects of climate change. That limit has since been lowered to 1.5 degrees Celsius. Unfortunately, current models predict that the even if countries hit their current pledges, temperatures will still climb to 3.3 degrees Celsius by the end of the century. The Paris Agreement offers a necessary first step, but in light of these new predictions, pledges must be strengthened.

Scientists hope the findings in the National Climate Assessment will compel the U.S. government to take the lead in updating their climate commitments.

Podcast: Can We Avoid the Worst of Climate Change? with Alexander Verbeek and John Moorhead

“There are basically two choices. We’re going to massively change everything we are doing on this planet, the way we work together, the actions we take, the way we run our economy, and the way we behave towards each other and towards the planet and towards everything that lives on this planet. Or we sit back and relax and we just let the whole thing crash. The choice is so easy to make, even if you don’t care at all about nature or the lives of other people. Even if you just look at your own interests and look purely through an economical angle, it is just a good return on investment to take good care of this planet.” – Alexander Verbeek

On this month’s podcast, Ariel spoke with Alexander Verbeek and John Moorhead about what we can do to avoid the worst of climate change. Alexander is a Dutch diplomat and former strategic policy advisor at the Netherlands Ministry of Foreign Affairs. He created the Planetary Security Initiative where representatives from 75 countries meet annually on the climate change-security relationship. John is President of Drawdown Switzerland, an act tank to support Project Drawdown and other science-based climate solutions that reverse global warming. He is a blogger at Thomson Reuters, The Economist, and sciencebasedsolutions.com, and he advises and informs on climate solutions that are economy, society, and environment positive.

Topics discussed in this episode include:

  • Why the difference between 1.5 and 2 degrees C of global warming is so important, and why we can’t exceed 2 degrees C of warming
  • Why the economy needs to fundamentally change to save the planet
  • The inequality of climate change
  • Climate change’s relation to international security problems
  • How we can avoid the most dangerous impacts of climate change: runaway climate change and a “Hothouse Earth”
  • Drawdown’s 80 existing technologies and practices to solve climate change
  • “Trickle up” climate solutions — why individual action is just as important as national and international action
  • What all listeners can start doing today to address climate change

Publications and initiatives discussed in this episode include:

You can listen to this podcast above, or read the full transcript below. And feel free to check out our previous podcast episodes on SoundCloud, iTunes, Google Play and Stitcher.

 

Ariel: Hi everyone, Ariel Conn here with the Future of Life Institute. Now, this month’s podcast is going live on Halloween, so I thought what better way to terrify our listeners than with this month’s IPCC report. If you’ve been keeping up with the news this month, you’re well aware that the report made very dire predictions about what a future warmer world will look like if we don’t keep global temperatures from rising more than 1.5 degrees Celsius. Then of course there were all of the scientists’ warnings that came out after the report about how the report underestimated just how bad things could get.

It was certainly enough to leave me awake at night in a cold sweat. Yet the report wasn’t completely without hope. The authors seem to still think that we can take action in time to keep global warming to 1.5 degrees Celsius. So to consider this report, the current state of our understanding of climate change, and how we can ensure global warming is kept to a minimum, I’m excited to have Alexander Verbeek and John Moorhead join me today.

Alexander is a Dutch environmentalist, diplomat, and former strategic policy advisor at the Netherlands Ministry of Foreign Affairs. Over the past 28 years, he has worked on international security, humanitarian, and geopolitical risk issues, and the linkage to the Earth’s accelerating environmental crisis. He created the Planetary Security Initiative held at The Hague’s Peace Palace where representatives from 75 countries meet annually on the climate change-security relationship. He spends most of his time speaking and advising on planetary change to academia, global NGOs, private firms, and international organizations.

John is President of Drawdown Switzerland in addition to being a blogger at Thomson Reuters, The Economist, and sciencebasedsolutions.com. He advises and informs on climate solutions that are economy, society, and environment positive. He affects change by engaging on the solutions to global warming with youth, business, policy makers, investors, civil society, government leaders, et cetera. Drawdown Switzerland an act tank to support Project Drawdown and other science-based climate solutions that reverse global warming in Switzerland and internationally by investment at scale in Drawdown Solutions. So John and Alexander, thank you both so much for joining me today.

Alexander: It’s a pleasure.

John: Hi Ariel.

Ariel: All right, so before we get too far into any details, I want to just look first at the overall message of the IPCC report. That was essentially: two degrees warming is a lot worse than 1.5 degrees warming. So, I guess my very first question is why did the IPCC look at that distinction as opposed to anything else?

Alexander: Well, I think it’s a direct follow up from the negotiations in the Paris Agreement, where in a very late stage after the talk for all the time about two degrees, at a very late stage the text included the reference to aiming for 1.5 degrees. At that moment, it invited the IPCC to produce a report by 2018 about what the difference actually is between 1.5 and 2 degrees. Another major conclusion is that it is still possible to stay below 1.5 degrees, but then we have to really urgently really do a lot, and that is basically cut in the next 12 years our carbon pollution with 45%. So that means we have no day to lose, and governments, basically everybody, business and people, everybody should get in action. The house is on fire. We need to do something right now.

John: In addition to that, we’re seeing a whole body of scientific study that’s showing just how difficult it would be if we were to get to 2 degrees and what the differences are. That was also very important. Just for your US listeners, I just wanted to clarify because we’re going to be talking in degrees centigrade, so for the sake of argument, if you just multiply by two, every time you hear one, it’s two degrees Fahrenheit. I just wanted to add that.

Ariel: Okay great, thank you. So before we talk about how to address the problem, I want to get more into what the problem actually is. And so first, what is the difference between 1.5 degrees Celsius and 2 degrees Celsius in terms of what impact that will have on the planet?

John: So far we’ve already seen a one degree C increase. The impacts that we’re seeing, they were all predicted by the science, but in many cases we’ve really been quite shocked at just how quickly global warming is happening and the impacts it’s having. I live here in Switzerland, and we’re just now actually experiencing another drought, but in the summer we had the worst drought in eastern Switzerland since 1847. Of course we’ve seen the terrible hurricanes hitting the United States this year and last. That’s one degree. So 1.5 degrees increase, I like to use the analogy of our body temperature: If you’re increasing your body temperature by two degrees Fahrenheit, that’s already quite bad, but if you then increase it by three degrees Fahrenheit, or four, or five, or six, then you’re really ill. That’s really what happens with global warming. It’s not a straight line.

For instance, the difference between 1.5 degrees and two degrees is that heat waves are forecast to increase by over 40%. There was another study that showed that fresh water supply would decrease by 9% in the Mediterranean for 1.5 degrees, but it would decrease by 17% if we got to two degrees. So that’s practically doubling the impact for a change of 1.5 degrees. I can go on. If you look at wheat production, the difference between two and 1.5 degrees is a 70% loss in yield. Sea level rise would be 50 centimeters versus 40 centimeters, and 10 centimeters doesn’t sound like that much, but it’s a huge amount in terms of increase.

Alexander: Just to illustrate that a bit, if you have just a 10 centimeters increase, that means that 10 million people extra will be on the move. Or to formulate it another way, I remember when Hurricane Sandy hit New York and the subway flooded. At that moment we had, and that’s where we now are more or less, we have had some 20 centimeters of sea level rise since the industrial revolution. If we didn’t have those 20 centimeters, the subways would not have flooded. So it sounds like nothing, but it has a lot of impacts. I think another one that I saw that was really striking is the impact on nature, the impact on insects or on coral reefs. So if you have two degrees, there’s hardly any coral reef left in the world, whereas if it would be 1.5 degrees, we would still lose 70-90%, but there could still be some coral reefs left.

John: That’s a great example I would say, because currently it’s 50% of coral reefs at one degree increase have already died off. So at 1.5, we could reach 90%, and two degrees we will have practically wiped off all coral reefs.

Alexander: And the humanitarian aspects are massive. I mean John just mentioned water. I think one of these things we will see in the next decade or next two decades is a lot of water related problems. The amount of people that will not have access to water is increasing rapidly. It may double in the next decade. So any indication here that we have in the report on how much more problems we will see with water if we have that half degree extra is a very good warning. If you see the impact of not enough water on the quality of life of people, on people going on the move, increased urbanization, more tensions in the city because there they also have problems with having enough water, and of course water is related to energy and especially food production. So its humanitarian impacts of just that half degree extra is massive.

Then last thing here, we’re talking about global average. In some areas, if let’s say globally it gets two degrees warmer, in landlocked countries for instance, it will go much faster, or in the Arctic, it goes like twice as fast with enormous impacts and potential positive feedback loops that might end up with.

Ariel: That was something interesting for me to read. I’ve heard about how the global average will increase 1.5 to two degrees, but I hadn’t heard until I read this particular report that that can mean up to 3.5 degrees Celsius in certain places, that it’s not going to be equally distributed, that some places will get significantly hotter. Have models been able to predict where that’s likely to happen?

John: Yeah, and not only that, it’s already happening. That’s also one of the problems we face when we describe global warming in terms of one number, an average number, is that it doesn’t portray the big differences that we’re seeing in terms of global warming. For instance, in the case of Switzerland we’re already at a two degree centigrade increase, and that’s had huge implications for Switzerland already. We’re a landlocked country. We have beautiful mountains as you know, and beautiful lakes as well, but we’re currently seeing things that we hadn’t seen before, which is some of our lakes are starting to dry out in this current drought period. Lake levels have dropped very significantly. Not the major ones that are fed by glaciers, but the glaciers themselves, out of 80 glaciers that are tracked in Switzerland, 79 are retreating. They’re losing mass.

That’s having impacts, and in terms of extreme weather, just this last summer we saw these incredible – what Al Gore calls water bombs – that happened in Lausanne and Eschenz, two of our cities, where we saw centimeters, months worth of rain, fall in the space of just a few minutes. This is caused all sorts of damages as well.

Just a last point about temperature differences is that, for instance, northern Europe this last summer, we saw four, five degrees, much warmer, which caused so much drying out that we saw forest fires that we hadn’t seen in places like Sweden or Finland and so on. We also saw in February of this year what the scientists call a temperature anomaly of 20 degrees, which meant that for a few days it was warmer in the North Pole than it was in Poland because of this temperature anomaly. Averages help us understand the overall trends, but they also hide differences that are important to consider as well.

Alexander: Maybe the word global warming is, let’s say for a general public, not the right word because it sounds a bit like “a little bit warmer,” and if it’s now two degrees warmer than yesterday, I don’t care so much. Maybe “climate weirding” or “climate chaos” are better because we will just get more extremes. Let’s say you follow for instance how the jet stream is moving, it used to have rather quick pulls going around the planet at the height where the jets like to fly at about 10 kilometers. It is now, because there’s less temperature difference between the equator and the poles, it’s getting slower. It’s getting a bit lazy.

That means two things. It means on the one hand that you see that once you have a certain weather pattern, it sticks longer, but the other thing is by this lazy jet stream to compare it a bit like a river that enters the flood lands and starts to meander, is that the waves are getting bigger. Let’s say if it used to be that the jet stream brought cold air from Iceland to the Netherlands where I’m from, since it is now wavier, it brings now cold weather all the way from Greenland, and same with warm weather. It comes from further down south and it sticks longer in that pattern so you get longer droughts, you get longer periods of rain, it all gets more extreme. So a country like the Netherlands which is a delta where we always deal with too much water, and like many other countries in the world, we experience drought now which is something that we’re not used to. We have to ask foreign experts how do you deal with drought, because we always tried to pump the water out.

John: Yeah I think the French, as often is the case, have the best term for it. It’s called dérèglement climatique which is this idea of climate disruption.

Ariel: I’d like to come back to some of the humanitarian impacts because one of the things that I see a lot is this idea that it’s the richer, mostly western but not completely western countries that are causing most of the problems, and yet it’s the poorer countries that are going to suffer the most. I was wondering if you guys could touch on that a little bit?

Alexander: Well I think everything related to climate change is about that it is unfair. It is created by countries that generally are less impacted by now, so we started let’s say in western Europe with the industrial revolution and came followed by the US that took over. Historically the US produced the most. Then you have a different groups of countries. Let’s take a country in Sahel like Burkina Faso for instance. They contributed practically zero to the whole problem, but the impact is much more on their sides. Then there’s kind of a group of countries in between. Let’s say a country like China that for a long time did not contribute much to the problem and is now rapidly catching up. Then you get this difficult “tragedy of the commons” behavior that everybody points at somebody else for their part, what they have done, and either because they did it in past or because they do it now, everybody can use the statistics in their advantage, apart from these really really poor countries that are getting the worst.

I mean a country like Tuvalu is just disappearing. That’s one of those low-lying natural states in the Pacific. They contributed absolutely zero and their country is drowning. They can point at everybody else and nobody will point at them. So there is a huge call for that this is an absolutely globalized problem that you can only solve by respecting each other, by cooperating together, and by understanding that if you help other countries, it’s not only your moral obligation but it’s also in your own interest to help the others to solve this.

John: Yeah. Your listeners would most likely also be aware of the sustainable development goals, which are the objectives the UN set for 2030. There are 17 of them. They include things like no poverty, zero hunger, health, education, gender equality, et cetera. If you look at who is being impacted by a 2 degree and a 1.5 degree world, then you can see that it’s particularly in the developing and the least developed countries that the impact is felt the most, and that these SDGs are much more difficult if not impossible to reach in a 2 degree world. Which again is why it’s so important for us to stay within 1.5 degrees.

Ariel: And so looking at this from more of a geopolitical perspective, in terms of trying to govern and address… I guess this is going to be a couple questions. In terms of trying to prevent climate change from getting too bad, what do countries broadly need to be doing? I want to get into specifics about that question later, but broadly for now what do they need to be doing? And then, how do we deal with a lot of the humanitarian impacts at a government level if we don’t keep it below 1.5 degrees?

Alexander: A broad answer would be two things: get rid of the carbon pollution that we’re producing every day as soon as possible. So phase out fossil fuels. The other that’s a broad answer would be a parallel to what John was just talking about. We have the agenda 2030. We have those 17 sustainable development goals. If we would all really follow that and live up to that, we’d actually get a much better world because all of these things are integrated. If you just look at climate change in isolation you are not going to get there. It’s highly integrated to all those related problems.

John: Yeah, just in terms of what needs to be done broadly speaking, it’s the adoption of renewable energy, scaling up massively the way we produce electricity using renewables. The IPCC suggested there should be 85% and there are others that say we can even get to 100% renewables by 2050. The other side is everything to do with land use and food, our diet has a huge impact as well. On the one hand as Alexander has said very well, we need to cut down on emissions that are caused by industry and fossil fuel use, but on the other hand what’s really important is to preserve our natural ecosystems that protect us, and add forest, not deforest. We need to naturally scale up the capture of carbon dioxide. Those are the two pieces of the puzzle.

Alexander: Don’t want to go too much into details, but all together it ultimately asks for a different kind of economy. In our latest elections when I looked at the election programs, every party whether left or right or in the middle, they all promise something like, “when we’re in government, they’ll be something like 3% of economic growth every year.” But if you grow 3% every year, that means that every 20 years you double your economy. That means every 40 years you quadruple your economy, which might be nice if it will be only the services industry, but if you talk about production we can not let everything grow in the amount of resources that we use and the amount of waste we produce, when the Earth itself is not growing. So apart from moving to renewables, it is also changing the way how we use everything around and how we consume.

You don’t have to grow when you have it this good already, but it’s so much in the system that we have used the past 200, 250 years. Everything is based on growth. And as the Club of Romes said in the early ’70s, there’s limits to growth unless our planet would be something like a balloon that somebody would blow air in and it would be growing, then you would have different system. But as long as that is not the case and as long as there’s no other planets where we can fly to, that is the question where it’s very hard to find an answer. You can conclude that we can not grow, but how do we change that? That’s probably a completely different podcast debate, but it’s something I wanted to flag here because at the end of today you always end up with this question.

Ariel: This is actually, this is very much something that I wanted to come back to, especially in terms of what individuals can do, I think consuming less is one of the things that we can do to help. So I want to come back to that idea. I want to talk a little bit more though about some of the problems that we face if we don’t address the problem, and then come back to that. So, first going back to the geopolitics of addressing climate change if it happens, I think, again, we’ve talked about some of the problems that can arise as a result of climate change, but climate change is also thought of as a threat multiplier. So it could trigger other problems. I was hoping you could talk a little bit about some of the threats that governments need to be aware of if they don’t address climate change, both in terms of what climate change could directly cause and what it could indirectly cause.

Alexander: There’s so much we can cover here. Let’s start with security, it’s maybe the first one you think of. You’ll read in the paper about climate wars and water wars and those kind of popular words, which of course is too simplified. But, there is a clear correlation between changing climates and security.

We’ve seen it in many places. You see it in the place where we’re seeing more extreme weather now, so let’s say in the Sahel area, or in the Middle East, there’s a lot of examples where you just see that because of rising temperatures and because of less rainfall which is consistently going on now, it’s getting worse now. The combination is worse. You get more periods of drought, so people are going on the move. Where are they going to? Well normally, unlike many populists like to claim in some countries, they’re not immediately going to the western countries. They don’t go too far. People don’t want to move too far so they go to an area not too far away, which is a little bit less hit by this drought, but by the fact that they arrived there, they increased pressures on the little water and food and other resources that they have. That creates, of course, tensions with the people that are already there.

So think for instance about the Nomadic herdsman and the more agricultural farmers that you have and the kind of tension. They all need a little bit of water, so you see a lot of examples. There’s this well known graph where you see the world’s food prices over the past 10 years. There were two big spikes where suddenly the food prices as well as the energy prices rapidly went up. The most well known is in late 2010. Then if you plot on that graph the revolutions and uprisings and unrest in the world, you see that as soon as the world’s food price gets above, let’s say, 200, you see that there is so much more unrest. The 2010 one led soon after to the Arab Spring, which is not an automatic connection. In some countries there was no unrest, and they had the same drought, so it’s not a one on one connection.

So I think you used the right word of saying a threat multiplier. On top of all the other problems they have with bad governance and fragile economies and all kinds of other development aspects that you find back in those same SDGs that were mentioned, if you add to that the climate change problem, you will get a lot of unrest.

But let me add one last thing here. It’s not just about security. There’s also, there’s an example for instance, when Bangkok was flooding, the factory that produced chips was flooded. The chip prices worldwide suddenly rose like 10%, but there was this factory in the UK that produced perfectly ready cars to sell. The only thing they missed was this few-centimeters big electronic chip that needed to be in the car. So they had to close the factory for like 6 weeks because of a flooding in Bangkok. That just shows that this interconnected worldwide economy that we have, you’re nowhere in the world safe from the impacts of climate change.

Ariel: I’m not sure if it was the same flood, but I think Apple had a similar problem, didn’t they? Where they had a backlog of problems with hard drives or something because the manufacturer, I think in Thailand, I don’t remember, flooded.

But anyway, one more problem that I want to bring up, and that is: at the moment we’re talking about actually taking action. I mean even if we only see global temperatures rise to two degrees Celsius, that will be because we took action. But my understanding is, on our current path we will exceed two degrees Celsius. In fact, the US National Highway Traffic Safety Administration Report that came out recently basically says that a 4 degree increase is inevitable. So I want to talk about what the world looks like at that level, and then also what runaway climate change is and whether you think we’re on a path towards runaway climate change, or if that’s still an extreme that hopefully won’t happen.

John: There’s a very important discussion that’s going on around at what point we will reach that tipping point where because of positive feedback loops, it’s just going to get worse and worse and worse. There’s been some very interesting publications lately that were trying to understand at what level that would happen. It turns out that the assessment is that it’s probably around 2 degrees. At the moment, if you look at the Paris Agreement and what all the countries have committed to and you basically take all those commitments which, you were mentioning the actions that already have been started, and you basically play them out until 2030, we would be on a track that would take us to 3 degrees increase, ultimately.

Ariel: And to clarify, that’s still with us taking some level of action, right? I mean, when you talk about that, that’s still us having done something?

John: Yeah, if you add up all the countries’ plans that they committed to and they fully implement them, it’s not sufficient. We would get to 3 degrees. But that’s just to say just how much action is required, we really need to step up the effort dramatically. That’s basically what the 1.5 degrees IPCC report tells us. If we were to get already to 2 degrees, let’s not talk about 3 degrees in the moment. But what could happen is that we would reach this tipping point into what scientists are describing a “Hothouse Earth.” What that means is that you get so much ice melting — now, the ice and snow serve an important protective function. They reflect back out, because it’s white it reflects back out a lot of the heat. If all that melts and is replaced by much darker land mass or ocean, then that heat is gonna be absorbed, not reflected. So that’s one positive feedback loop that constantly makes it even warmer, and that melts more ice, et cetera.

Another one is the permafrost, where the permafrost, as its name suggests, is frozen in the northern latitudes. The risk is that it starts to melt. It’s not the permafrost itself, it’s all the methane that it contains, which is a very powerful greenhouse gas which would then get released. That leads to warmer temperatures which melts even more of the permafrost et cetera.

That’s the whole idea of runaway, then we completely lose control, all the natural cooling systems, the trees and so on start to die back as well, and so we get four, five, six … But as I mentioned earlier, 4 could be 7 in some parts of the world and it could be 2 or 3 in others. It would make large parts of the world basically uninhabitable if you take it to the extreme of where it could all go.

Ariel: Do we have ideas of how long that could take? Is that something that we think could happen in the next 100 years or is that something that would still take a couple hundred years?

John: Whenever we talk about the temperature increases, we’re looking at the end of the century, so that’s 2100, but that’s less than 100 years.

Ariel: Okay.

Alexander: The problem is looking to, at the end of the century, this always come back to “end of the century.” It sounds so far away, it’s just 82 years. I mean if you flip back, you’re in 1936. My father was a boy of 10 years old and it’s not that far away. My daughter might still live in 2100, but by that time she’ll have children and maybe grandchildren that have to live through the next century. It’s not that once we are at the year 2100 that the problem suddenly stops. We talk about an accelerating problem. If you stay on the business-as-usual scenario and you mitigate hardly anything, then it’s 4 degrees at the end of the century, but the temperatures keep rising.

As we already said, 4 degrees at the end of the century, that is kind of average. In the worst case scenario, it might as well be 6. It could also be less. And in the Arctic it could be anywhere between let’s say 6 or maybe even 11. It’s typically the Arctic where you have this methane, what John was just talking about, so we don’t want to get some kind of Venus, you know. This is typically the world we do not want. That makes it why it’s so extremely important to take measures now because anything you do now is a fantastic investment in the future.

If you look at risks on other things, Dick Cheney a couple of years ago said, if there’s only 1% chance that terrorists will get weapons of mass destruction we should act as if they have them. Why don’t we do it in this case? If there’s only 1% chance that we would get complete destruction of the planet as we know it, we have to take urgent action. So why do it on the one risk that hardly kills people if you look on big numbers, however bad terrorism is, and now we talk something about a potential massive killer of millions of people and we just say, “Yeah, well you know, only 50% chance that we get in this scenario or that scenario.”

What would you do if you were sitting in a plane and at takeoff the pilot says, “Hi guys. Happy to be on board. This is how you buckle and unbuckle your belt. And oh by the way, we have 50% chance that we’re gonna make it today. Hooray, we’re going to take off.” Well you would get out of the plane. But you can’t get out of this planet. So we have to take action urgently, and I think the report that came out is excellent.

The problem is, if you’re reading it a bit too much and everybody is focusing on it now, you get into this energetic mood like, “Hey. We can do it!” We only talk about corals. We only talk about this because suddenly we’re not talking about the three or four or five degree scenarios, which is good for a change because it gives hope. I know that in talks like this I always try to give as much hope as I can and show the possibilities, but we shouldn’t forget about how serious the thing is that we’re actually talking about. So now we go back to the positive side.

Ariel: Well I am all for switching to the positive side. I find myself getting increasingly cynical about our odds of success, so let’s try to fix that in whatever time we have left.

John: Can I just add just briefly, Alex, because I think that’s a great comment. It’s something that I’m also confronted with sometimes by fellow climate change folk, is that they come up to me, and this is after they’ve heard me talk about what the solutions are. They tell me, “Don’t make it sound too easy either.” But I think it’s a question of balance and I think that when we do talk about the solutions and we’ll hear about them, but do bear in mind just how much change is involved. I mean it is really very significant change that we need to embark on to avoid 1.5 or beyond.

Alexander: There’s basically two choices. We’re going to massively change everything we are doing on this planet, the way we work together, the actions we take, the way we run our economy, and the way we behave towards each other and towards the planet and towards everything that lives on this planet. Or we sit back and relax and we just let the whole thing crash. The choice is so easy to make, even if you don’t care at all about nature or the lives of other people. Even if you just look at your own interests and look purely through an economical angle, it is just a good return on investment to take good care of this planet.

It is only because those that have so much political power are so closely connected to the big corporations that look for short-term profits, and certainly not all of them, but the ones that are really influential, and I’m certainly thinking about the country of our host today. They have so much impact on the policies that are made and their sole interest is just the next quarterly financial report that comes out. That is not in the interest of the people of this planet.

Ariel: So this is actually a good transition to a couple of questions that I have. I actually did start looking at the book Drawdown, which talks about, what is it, 80 solutions? Is that what they discuss?

John: Yeah, 80 existing solutions or technologies or practices, and then there’s 20 what they call coming attractions which would be in addition to that. But it’s the 80 we’re talking about, yeah.

Ariel: Okay, so I started reading that and I read the introduction and the first chapter and felt very, very hopeful. I started reading about some of the technologies and I still felt hopeful. Then as I continued reading it and began to fully appreciate just how many technologies have to be implemented, I started to feel less hopeful. And so, going back, before we talk too much about the specific technologies, I think as someone who’s in the US, one of the questions that I have is even if our federal government isn’t going to take action, is it still possible for those of us who do believe that climate change is an issue to take enough action that we can counter that?

John: That’s an excellent question and it’s a very apropos question as well. My take on this is I had the privilege of being at the Global Climate Action Summit in San Francisco. You’re living it, but I think it’s two worlds basically in the United States at the moment, at least two worlds. What really impressed me, however, was that you had people of all political persuasions, you had indigenous people, you had the head of the union, you had mayors, city leaders. You also had some country leaders as well who were there, particularly those who are gonna be most impacted by climate change. What really excited me was the number of commitments that were coming at us throughout the days of, one city that’s gonna go completely renewable and so on.

We had so many examples of those. And in particular, if you’re talking about the US, California, which actually if it was its own country would be the fifth economy I believe — they’re committed to achieving 100% renewable energy by 2050. There was also the mayor of Houston, for instance, who explained how quickly he wanted to also achieve 100% renewables. That’s very exciting and that movement I think is very important. It would be of course much much better to have nations’ leaders as well to fully back this, but I think that there’s a trickle-up aspect, and I don’t know if this is the right time to talk about exponential growth that can happen. Maybe when we talk about the specific solutions we can talk about just how quickly they can go, particularly when you have a popular movement around saving the climate.

A couple of weeks ago I was in Geneva. There was a protest there. Geneva is quite a conservative city actually. I mean you’ve got some wonderful chocolate as you know, but also a lot of banks and so on. At the march, there were, according to the organizers, 7000 people. It was really impressive to see that in Geneva which is not that big a city. The year before at the same march there were 500. So we’re more than increasing the numbers by 10, and I think that there’s a lot of communities and citizens that are being affected that are saying, “I don’t care what the federal government’s doing. I’m gonna put a solar panel on my roof. I’m going to change my diet, because it’s cheaper, it saves me money, and it also is much healthier to do that and with much more resilience,” when a hurricane comes around for instance.

Ariel: I think now is a good time to start talking about what some of the solutions are. I wanna come back to the idea of trickle up, because I’m still gonna ask you guys more questions about individual action as well, but first let’s talk about some of the things that we can be doing now. What are some of the technological developments that exist today that have the most promise that we should be investing more in and using more?

John: What I perhaps wanted to do is just take a little step back, because the IPCC does talk about some very unpleasant things that could happen to our planet, but they also talk about what the steps are to stay within 1.5 degrees. Then there’s some other plans we can discuss that also achieve that. So what does the IPCC tell us? You mentioned it earlier. First of all, we need to significantly cut, every decade actually, by half, the carbon dioxide emission and greenhouse gas emissions. That’s something called the Carbon Law. It’s very convenient because you can imagine defining what your objective is and say okay, every 10 years I need to cut in half the emissions. That’s number one.

Number two is that we need to go dramatically to renewables. There’s no other way, because of the emissions that fossil fuels produce, they will no longer be an option. We have to go renewable as quickly as possible. It can be done by 2050. There’s a professor at Stanford called Mark Jacobson who with an international team has mapped out the way to get to 100% renewables for 139 countries. It’s called The Solutions Project. Number Three has to do with fossil fuels. What the IPCC says is that there should be practically no coal being used in 2050. That’s where there are some differences.

Basically, as I mentioned earlier, on the one hand you have your emissions and on the other hand you have this capture, the sequestration of carbon by soils and by vegetation. They’re both in balance. One is putting CO2 into the air, and the other is taking it out. So we need to favor obviously the sequestration. It’s an area under the curve problem. You have a certain budget that’s associated with that temperature increase. If you emit more, you need to absorb more. There’s just no two ways about it.

The IPCC is actually in that respect quite conservative, because they’re saying there still will be coal around. Whereas there are other plans such as Drawdown and the Exponential Climate Action Roadmap, as well as The Solutions Project which I just mentioned, which get us to 100% renewables by 2050, and so zero emissions for sake of argument.

The other difference I would say with the IPCC is that because you are faced with this tremendous problem of all this carbon dioxide we need to take out of the atmosphere, which is where Drawdown comes from. The term means to draw out of the atmosphere the carbon dioxide. There’s this technology which is around, it’s basically called energy crops. You basically grow crops for energy. That gives us a little bit of an issue because it encourages politicians to think that there’s a magic wand that we’ll be able to use in the future to all of a sudden be able to remove the carbon dioxide. I’m not saying that we may very well have to get there, what I am saying is that we can, with for instance Drawdown’s 80 solutions, get there.

Now in terms of the promise, the thing that I think is important is that the thinking has to evolve from the magic bullet syndrome that we all live every day, we always want to find that magic solution that’ll solve everything, to thinking more holistically about the whole of the Earth’s planetary system and how they interact and how we can achieve solutions that way.

Alexander: Can I ask something John? Can you summarize that Drawdown relies with its 80 technologies, completely on proven technology whereas in the recent 1.5 report, I have the impression that they practically, for every solution that they come up with, they rely on still unproven technologies that are still on the drawing table or maybe tested on a very small scale? Is there a difference between those two approaches?

John: Not exactly. I think there’s actually a lot of overlap. There’s a lot of the same solutions that are in Drawdown are in all climate solutions, so we come back to the same set which is actually very reassuring because that’s the way science works. It empirically tests and models all the different solutions. So what I always find very reassuring is whenever I read different approaches, I always look back at Drawdown and I say, “Okay yes, that’s in the 80 solutions.” So I think there is actually a lot of over overlap. A lot of IPCC is Drawdown solutions, but the IPCC works a bit differently because the scientists have to work with governments in terms of coming up with proposals, so there is a process of negotiation of how far can we take this which scientists such as the Project Drawdown scientists are unfettered by that.

They just go out and they look for what’s best. They don’t care if it’s politically sensitive or not, they will say what they need to say. But I think the big area of concern is this famous bio-energy carbon capture and storage (BECCS), which are these energy crops that you grow and then you capture the carbon dioxide. So you actually are capturing carbon dioxide. There’s both moral hazard because politicians will say, “Okay. I’m just going to wait until BECCS comes round and that will solve all our problems,” on the one hand. On the other hand it does pose us with some serious questions about competition of land for producing crops versus producing crops for energy.

Ariel: I actually want to follow up with Alexander’s question really quickly because I’ve gotten a similar impression that some of the stuff in the IPCC report is for technologies that are still in development. But my understanding is that the Drawdown solutions are in theory at least, if not in practice, ready to scale up.

John: They’re existing technologies, yeah.

Ariel: So when you say there’s a lot of overlap, is that me or us misunderstanding the IPCC report or are there solutions in the IPCC report that aren’t ready to be scaled up?

John: The approaches are a bit different. The approaches that Drawdown takes is a bottom up approach. They basically unleashed 65 scientists to go out and look for the best solutions. So they go out and they look at all the literature. And it just so happens that nuclear energy is one of them. It doesn’t produce greenhouse gas emissions. It is a way of producing energy that doesn’t cause climate change. A lot of people don’t like that of course, because of all the other problems we have with nuclear. But let me just reassure you very quickly that there are three scenarios for Drawdown. It goes from so-called “Plausible,” which I don’t like as a name because it suggests that the other ones might not be plausible, but it’s the most conservative one. Then the second one is “Drawdown.” Then the third one is “Optimum.”

Optimum doesn’t include solutions that are called with regrets, such as nuclear. So when you go optimum, basically it’s 100% renewable. There’s no nuclear energy in there either in the mix. That’s very positive. But in terms of the solutions, what they look at, what IPCC looks at is the trajectory that you could achieve given the existing technologies. So they talk about renewables, they talk about fossil fuels going down to net zero, they talk about natural climate solutions, but perhaps they don’t talk about, for instance, educating girls, which is one of the most important Drawdown solutions because of the approach that Drawdown takes where they look at everything. Sorry, that’s a bit of a long answer to your question.

Alexander: That’s actually part of the beauty of Drawdown, that they look so broadly, that educating girls… So a girl leaving school at 12 got on average like five children and a girl that you educate leaving school at the age of 18 on average has about two children, and they will have a better quality of life. They will put much less pressure on the planet. So this more holistic approach of Drawdown I like very much and I think it’s good to see so much overlap between Drawdown and IPCC. But I was struck by IPCC that it relies so heavily on still unproven technologies. I guess we have to bet on all our horses and treat this a bit as a kind of wartime economy. If you see the creativity and the innovation that we saw during the second World War in the field of technology as well as government by the way, and if you see, let’s say, the race to the moon, the amazing technology that was developed in such a short time.

Once you really dedicate all your knowledge and your creativity and your finances and your political will into solving this, we can solve this. That is what Drawdown is saying and that is also what the IPCC 1.5 is saying. We can do it, but we need the political will and we need to mobilize the strengths that we have. Unfortunately, when I look around worldwide, the trend is in many countries exactly the opposite. I think Brazil might soon be the latest one that we should be worried about.

John: Yeah.

Ariel: So this is, I guess where I’m most interested in what we can do and also possibly the most cynical, and this comes back to this trickle up idea that you were talking about. That is, we don’t have the political will right now. So what do those of us who do have the will do? How do we make that transition of people caring to governments caring? Because I do, maybe this is me being optimistic, but I do think if we can get enough people taking individual action, that will force governments to start taking action.

John: So trickle up, grassroots, I think we’re in the same sort of idea. I think it’s really important to talk a little bit, and then we will get into the solutions, but to talk about not just as the solutions to global warming, but to a lot of other problems as well such as air pollution, our health, the pollution that we see in the environment. And actually Alexander you were talking earlier about the huge transformation. But transformation does not necessarily always have to mean sacrifice. It doesn’t also have to mean that we necessarily, although it’s certainly a good idea, for instance, I think you were gonna ask a question also about flying, to fly less there’s no doubt about that. To perhaps not buy the 15th set of clothes and so on so forth.

So there certainly is an element of that, although the positive side of that is the circular economy. In fact, these solutions, it’s not a question of no growth or less growth, but it’s a question of different growth. I think in terms of the discussion in climate change, one mistake that we have made is emphasized too much the “don’t do this.” I think that’s also what’s really interesting about Drawdown, is that there’s no real judgments in there. They’re basically saying, “These are the facts.” If you have a plant-based diet, you will have a huge impact on the climate versus if you eat steak every day, right? But it’s not making a judgment. Rather than don’t eat meat it’s saying eat plant-based foods.

Ariel: So instead of saying don’t drive your car, try to make it a competition to see who can bike the furthest each week or bike the most miles?

John: For example, yeah. Or consider buying an electric car if you absolutely have to have a car. I mean in the US it’s more indispensable than in Europe.

Alexander: It means in the US that when you build new cities, try to build them in a more clever way than the US has been doing up until now because if you’re in America and you want to buy whatever, a new toothbrush, you have to get in your car to go there. When I’m in Europe, I just walk out of the door and within 100 meters I can buy a toothbrush somewhere. I walk or I go on a bicycle.

John: That might be a longer-term solution.

Alexander: Well actually it’s not. I mean in the next 30 years, the amount of investment they can place new cities is an amount of 90 trillion dollars. The city patterns that we have in Europe were developed in the Middle Ages in the centers of cities, so although it is urgent and we have to do a lot of things, you should also think about the investments that you make now that will be followed for hundreds of years. We shouldn’t keep repeating the mistakes from the past. These are the kinds of things we should also talk about. But to come back to your question on what we can do individually, I think there is so much that you can do that helps the planet.

Of course, you’re only one out of seven billion people, although if you listen to this podcast it is likely that you are in that elite out of that seven billion that is consuming much more of the planet, let’s say, than your quota that you should be allowed to. But it means, for instance, changing your diet, and then if you go to a plant-based diet, the perks are not only that it is good for the planet, it is good for yourself as well. You live longer. You have less chance of developing cancer or heart disease or all kinds of other things you don’t want to have. You will live longer. You will have for a longer time a healthier life.

It means actually that you discover all kinds of wonderful recipes that you had never heard of before when you were still eating steak every day, and it is actually a fantastic contribution for the animals that are daily on an unimaginable scale tortured all over the world, locked up in small cages. You don’t see it when you buy it at a butcher, but you are responsible because they do that because you are the consumer. So stop doing that. Better for the planet. Better for the animals. Better for yourself. Same with use your bicycle, walk more. I still have a car. It is 21 years old. It’s the only car I ever bought in my life, and I use it maximum 20 minutes per month. I’m not even buying an electrical vehicle because I still got an old one. There’s a lot that you can do and it has more advantages than just to the planet.

John: Absolutely. Actually, walkable cities is one of the Drawdown solutions. Maybe I can just mention very quickly. I’ll just list out of the 80 solutions, there was a very interesting study that showed that there are 30 of them that we could put into place today, and that that added up to about 40% of the greenhouse gases that we’ll be able to remove.

I’ll just list them quickly. The ones at the end, they’re more, if you are in an agricultural setting, which of course is probably not the case for many of your listeners. But: reduced food waste, plant-rich diets, clean cookstoves, composting, electric vehicles we talked about, ride sharing, mass transit, telepresence (basically video conferencing, and there’s a lot of progress being made there which means we perhaps don’t need to take that airplane.) Hybrid cars, bicycle infrastructure, walkable cities, electric bicycles, rooftop solar, solar water (so that’s heating your hot water using solar.) Methane digesters (it’s more in an agricultural setting where you use biomass to produce methane.) Then you have LED lighting, which is a 90% gain compared to incandescent. Household water saving, smart thermostats, household recycling and recyclable paper, micro wind (there are some people that are putting a little wind turbine on their roof.)

Now these have to do with agriculture, so they’re things like civil pasture, tropical staple trees, tree intercropping, regenerative agriculture, farmland restoration, managed grazing, farmland irrigation and so on. If you add all those up it’s already 37% of the solution. I suspect that the 20 is probably a good 20%. Those are things you can do tomorrow — today.

Ariel: Those are helpful, and we can find those all at drawdown.org; that’ll also list all 80. So you’ve brought this up a couple times, so let’s talk about flying. This was one of those things that really hit home for me. I’ve done the carbon footprint thing and I have an excellent carbon footprint right up until I fly and then it just explodes. As soon as I start adding the footprint from my flights it’s just awful. I found it frustrating that one, so many scientists especially have … I mean it’s not even that they’re flying, it’s that they have to fly if they want to develop their careers. They have to go to conferences. They have to go speak places. I don’t even know where the responsibility should lie, but it seems like maybe we need to try to be cutting back on all of this in some way, that people need to be trying to do more. I’m curious what you guys think about that.

Alexander: Well start by paying tax, for instance. Why is it — well I know why it is — but it’s absurd that when you fly an airplane you don’t pay tax. You can fly all across Europe for like 50 euros or 50 dollars. That is crazy. If you would do the same by your car, you pay tax on the petrol that you buy, and worse, you are not charged for the pollution that you cause. We know that airplanes are heavily polluting. It’s not only the CO2 that they produce, but where they produce, how they produce. It works three to four times faster than all the CO2 that you produce if you drive your car. So we know how bad it is, then make people pay for it. Just make flying more expensive. Pay for the carbon you produce. When I produce waste at home, I pay to my municipality because they pick it up and they have to take care of my garbage, but if I put garbage in the atmosphere, somehow I don’t go there. Actually, it is by all sorts of strange ways, it’s actually subsidized because you don’t pay a tax for it, so there’s worldwide like five or six times as much subsidies on fossil fuels than there is on renewables.

We completely have to change the system. Give people a budget maybe. I don’t know, there could be many solutions. You could say that everybody has the right to search a budget for flying or for carbon, and you can maybe trade that or swap it or whatever. There’s some NGOs that do it. They say to, I think the World Wildlife Fund, but correct me if I’m wrong. All the people working there, they get not only a budget for the projects, they also get a carbon budget. You just have to choose, am I going to this conference or going to that conference, or should I take the train, and you just keep track of what you are doing. That’s something we should maybe roll out on a much bigger scale and make it more expensive.

John: Yeah, the whole idea of a carbon tax, I think is key. I think that’s really important. Some other thoughts: Definitely reduce, do you really absolutely need to make that trip, think about it. Now with webcasting and video conferencing, we can do a lot more without flying. The other thing I suggest is that when you at some point you absolutely do have to travel, try to combine it with as many other things as possible that are perhaps not directly professional. If you are already in the climate change field, then at least you’re traveling for a reason. Then it’s a question of the offsets. Using calculators you can see what the emissions were and pay for what’s called an offset. That’s another option as well.

Ariel: I’ve heard mixed things about offsets. In some cases I see that yes, you should absolutely buy them, and you should. If you fly, you should get them. But that in a lot of cases they’re a bandaid or they might be making it seem like it’s okay to do this when it’s still not the solution. I’m curious what your thoughts on that are.

John: For me, something like an offset, as much as possible should be a last resort. You absolutely have to make the trip, it’s really important, and you offset your trip. You pay for some trees to be planted in the rainforest for instance. There are loads of different possibilities to do so. It’s not a good idea. Unfortunately Switzerland’s plan, for instance, includes a lot of getting others to reduce emissions. That’s really, you can argue that it’s cheaper to do it that way and somebody else might do it more cheaply for you so to speak. So cheaper to plant a tree and it’ll have more impact in the rainforest than in Switzerland. But on the other hand, it’s something which I think we really have to avoid, also because in the end the green economy is where the future lies and where we need to transform to. So if we’re constantly getting others to do the decarbonization for us, then we’ll be stuck with an industry which is ultimately will become very expensive. That’s not a good idea either.

Alexander: I think also the prices are absolutely unrealistic. If you fly, let’s say, from London to New York, your personal, just the fact that you were in the plane, not all the other people, the fact you were in the plane is responsible for three square meters of the Arctic that is melting. You can offset that by paying something like, what is it, 15 or 20 dollars for offsetting that flight. That makes ice in the Arctic extremely cheap. A square meter would be worth something like seven dollars. Well I personally would believe that it’s worth much more.

Then the thing is, then they’re going to plant a tree that takes a lot of time to grow. By the time it’s big, it’s getting CO2 out of the air, are they going to cut it and make newspapers out of it which you then burn in a fireplace, the carbon is still back to where it was. So you need to really carefully think what you’re doing. I feel it is very much a bit like going to a priest and say like, “I have flown. Oh, I have sinned, but I can now do a few prayers and I pay these $20 and now it’s fine. I can book my next flight.” That is not the way it should be. Punish people up front to pay the tickets. Pay the price for the pollution and for the harm that you are causing to this planet and to your fellow citizens on this planet.

John: Couldn’t agree more. But there are offset providers in the US, look them up. See which one you like the best and perhaps buy more offsets. Economy is half the carbon than Business class, I hate to say.

Alexander: Something for me which you mentioned there, I decided long ago, six, seven years ago, that I would never ever in my life fly Business again. I’m not, as somebody who had a thrombosis and the doctors advised me that I should take business, I don’t. I still fly. I’m very much like Ariel that my footprint is okay until the moment that I start adding flying because I do that a lot for my job. Let’s say in the next few weeks, I have a meeting in the Netherlands. I have only 20 days later a meeting in England. I stay in the Netherlands. In between I do all my travel to Belgium and France and the UK, I do everything by train. It’s only that by plane I’m going back from London to Stockholm, because I couldn’t find any reasonable way to go back. I wonder why don’t we have high speed train connections all the way up to Stockholm here.

Ariel: We talked a lot about taxing carbon. I had an interesting experience last week where I’m doing what I can to try to not drive if I’m in town. I’m trying to either bike or take the bus. What often happens is that works great until I’m running late for something, and then I just drive because it’s easier. But the other week, I was giving a little talk on the campus at CU Boulder, and the parking on CU Boulder is just awful. There is absolutely no way that, no matter how late I’m running, it’s more convenient for me to take my car. It never even once dawned on me to take the car. I took a bus. It’s that much easier. I thought that was really interesting because I don’t care how expensive you make gas or parking, if I’m running late I’m probably gonna pay for it. Whereas if you make it so inconvenient that it just makes me later, I won’t do that. I was wondering if you have any other, how can we do things like that where there’s also this inconvenience factor?

Alexander: Have a look at Europe. Well coincidentally I know CU Boulder and I know how difficult the parking is. That’s the brilliance of Boulder where I see a lot of brilliant things. It’s what we do in Europe. I mean one of the reasons why I never ever use a car in Stockholm is that I have no clue how or where to park it, nor can I read the signs because my Swedish is so bad. I’m afraid of a ticket. I never use the car here. Also because we have such perfect public transport. The latest thing they have here is the VOI that just came out like last month, which is, I don’t know the word, we call it “step” in Dutch. I don’t know what you call that in English, whether it’s the same word or not, but it’s like these two-wheeled things that kids normally have. You know?

They are now here electric, so you download an app on your mobile phone and you see one of them in the street because they’re everywhere now. Type in a code and then it unlocks. Then it starts using your time. So for every minute, you pay like 15 cents. So all these electric little things that are everywhere for free, you just drive all around town and you just drop them wherever you like. When you need one, you look on your app and the app shows you where the nearest one is. It’s an amazing way of transport and it’s just, a month ago you saw just one or two. Now they are everywhere. You’re on the streets, you see one. It’s an amazing new way of transport. It’s very popular. It just works on electricity. It makes things so much more easy to reach everywhere in the city because you go at least twice as fast as walking.

John: There was a really interesting article in The Economist about parking. Do you know how many parking spots The Shard, the brand new building in London, the skyscraper has? Eight. The point that’s being made in terms of what you were just asking about in terms of inconvenience, in Europe it just really, in most cases it really doesn’t make any sense at all to take a car into the city. It’s a nightmare.

Before we talk more about personal solutions, I did want to make some points about the economics of all these solutions because what’s really interesting about Drawdown as well is that they looked at both what you would save and what it would cost you to save that over the 30 years that you would put in place those solutions. They came up with some things which at first sight are really quite surprising, because you would save 74.4 trillion dollars for an investment or a net cost of 29.6 trillion.

Now that’s not for all the solutions, so it’s not exactly that. In some of the solutions it’s very difficult to estimate. For instance, the value of educating girls. I mean it’s inestimable. But the point that’s also made is that if you look at The Solutions Project, Professor Jacobson, they also looked at savings, but they looked at other savings that I think are much more interesting and much more important as well. You would basically see a net increase of over 24 million long-term jobs that you would see an annual decrease in four to seven million air pollution deaths per year.

You would also see the stabilization of energy prices, because think of the price of oil where it goes from one day to the next, and annual savings of over 20 trillion in health and climate costs. Which comes back to, when you’re doing those solutions, you are also saving money, but you are also saving more importantly peoples’ lives, the tragedy of the commons, right? So I think it’s really important to think about those solutions. I mean we know very well why we are still using fossil fuels, it’s because of the massive subsidies and support that they get and the fact that vested interests are going to defend their interests.

I think that’s really important to think about in terms of those solutions. They are becoming more and more possible. Which leads me to the other point that I’m always asked about, which is, it’s not going fast enough. We’re not seeing enough renewables. Why is that? Because even though we don’t tax fuel, as you mentioned Alexander, because we’ve produced now so many solar panels, the cost is getting to be much cheaper. It’ll get cheaper and cheaper. That’s linked to this whole idea of exponential growth or tipping points, where all of a sudden all of us start to have a solar panel on our roof, where more and more of us become vegetarians.

I’ll just tell you a quick anecdote on that. We had some out of town guests who absolutely wanted to go to actually a very good steakhouse in Geneva. So along we went. We didn’t want to offend them and say “No, no, no. We’re certainly not gonna go to a steakhouse.” So we went along. It was a group of seven of us. Imagine the surprise when they came to take our orders and three out of seven of us said, “I’m afraid we’re vegetarians.” It was a bit of a shock. I think those types of things start to make others think as well, “Oh, why are you vegetarian,” and so on and so forth.

That sort of reflection means that certain business models are gonna go out of business, perhaps much faster than we think. On the more positive side, there are gonna be many more vegetarian restaurants, you can be sure, in the future.

Ariel: I want to ask about what we’re all doing individually to address climate change. But Alexander, one of the things that you’ve done that’s probably not what just a normal person would do, is start the Planetary Security Initiative. So before we get into what individuals can do, I was hoping you could talk a little bit about what that is.

Alexander: That was not so much as an individual. I was at Yale University for half a year when I started this, but then when I came back in the Ministry of Foreign Affairs for one more year, I had some ideas and I got support from the ministers of doing that, on bringing the experts in the world together that work in the field of the impact that climate change will have on security. So the idea to start was creating an annual meeting where all these experts in the world come together because that didn’t exist yet, and to make more scientists and researchers in the world energetic to study more in the field of how this relationship works. But more importantly, the idea was also to connect the knowledge and the insights of these experts on how the changing climate and the impacts impacts has on water and food, and our changing planetary conditions, how they are impacting the geopolitics.

I have a background, both in security as well as environment. That used to be two completely different tracks that weren’t really interacting. The more I was working on those two things, the more that I saw that the changing environment is actually directly impacting our security situation. It’s already happening and you can be pretty sure that the impact is going to be much more in the future. So what we then started was a meeting in the Peace Palace in the Hague. There were some 75 countries the first time that we were present there, and then the key experts in the world. It’s now an annual meeting that always takes place. For anybody that’s interested, contact me and then I will provide you with the right contact. It is growing now into all kinds of other initiatives and other involvement and more studies that are taking place.

So the issue is really taking off, and that is mainly because more and more people see the need of getting better insights into the impact that all of these changes that we’ve been discussing, that it’ll have on security whether that’s individual security, human security of individuals, that’s also geopolitical security. Imagine that when so much is changing, when the economies are changing so rapidly, when interests of people change and when people start going on the move, tensions will rise for a number of reasons, partly related to climate change, but it’s very much a situation where climate change is already in an existing fragile situation, it’s making it worse. So that is the Planetary Security Initiative. The government of the Netherlands has been very strong on this, working closely together with something other governments. Sweden, for instance, where I’m living, Sweden has in the past year been focusing very much on strengthening the United Nations, that you would have experts at the relevant high level in New York that can connect the dots and connect to people and the issues to not just raise awareness for the issue, but make sure that in the policies that are made, these issues are also taken into account because you better do it up front than repair damage afterwards if you haven’t taken care of these issues.

It’s a rapidly developing field. There is a new thing as, for instance, using AI and data, I think the World Resources Institute in Washington is very good at that, where they combine let’s say, the geophysical data, let’s say satellite and other data on increasing drought in the world, but also deforestation and other resource issues. They are connecting that now with the geopolitical impacts with AI and with combining all these completely different databases. You get much better insight on where the risks really are, and I believe that in the years to come, WRI in combination with several other think tanks can do brilliant work where the world is really waiting for the kind of insights. International policies will be so much more effective if you know much better where the problems are really going to hit first.

Ariel: Thank you. All right, so we are starting to get a little bit short on time, and I want to finish the discussion with things that we’ve personally been doing. I’m gonna include myself in this one because I think the more examples the better. So what we’ve personally been doing to change our lifestyles for the better, not sacrifice, but for the better, to address climate change. And also, to keep us all human, where we’re failing that we wish we were doing better.

I can go ahead and start. I am trying to not use my car in town. I’m trying to stick to biking or taking public transportation. I have dropped the temperature in our house by another degree, so I’m wearing more sweaters. I’m going to try to be stricter about flying, only if I feel that I will actually be having a good impact on the world will I fly, or a family emergency, things like that.

I’m pretty sure our house is on wind power. I work remotely, so I work from home. I don’t have to travel for work. I those are some of the big things, and as I said, flying is still a problem for me so that’s something I’m working on. Food is also an issue for me. I have lots of food issues so cutting out meat isn’t something that I can do. But I have tried to buy most of my food from local farms, I’m trying to buy most of my meat from local farms where they’re taking better care of the animals as well. So hopefully that helps a little bit. I’m also just trying to cut back on my consumption in general. I’m trying to not buy as many things, and if I do buy things I’m trying to get them from companies that are more environmentally-conscious. So I think food and flying are sort of where I’m failing a little bit, but I think that’s everything on my end.

Alexander: I think one of the big changes I made is I became years ago already vegetarian for a number of good reasons. I am now practically vegan. Sometimes when I travel it’s a bit too difficult. I hardly ever use the car. I guess it’s just five or six times a year that I actually use my car. I use bicycles and public transport. The electricity at our home is all wind power. In the Netherlands, that’s relatively easy to arrange nowadays. There’s a lot of offers for it, so I deliberately buy wind power, including in the times when wind power was still more expensive than other power. I think about in consumption, when I buy food, I try to buy more local food. There’s the occasional kiwi, which I always wonder it’s arrives in Europe, but that’s another thing that you can think of. Apart from flying, I really do my best with my footprint. Then flying is the difficult thing because with my work, I need to fly. It is about personal contacts. It is about meeting a lot of people. It’s about teaching.

I do teaching online. I use Skype for teaching to classrooms. I do many Skype conferences all the time, but yes I’m still flying. I refuse flying business class. I started that some six, seven years ago. Just today business class ticket was offered to me for a very long flight and I refused it. I say I will fly economy. But yes, the flying is what adds to my footprint. I still, I try to combine trips. I try to stay longer at a certain place, combining it, and then by train go to all kinds of other places. But when you’re stuck here in Stockholm, it’s quite difficult to get here by other means than flying. Once I’m, let’s say, in the Netherlands or Brussels or Paris or London or Geneva, you can do all those things by train, but it gets a bit more difficult out here.

John: Pretty much in Alexander’s case, except that I’m very local. I travel actually very little and I keep the travel down. If I do have to travel, I have managed to do seven hour trips by train. That’s a possibility in Europe, but that sort of gets you to the middle of Germany. Then the other thing is I’ve become vegetarian recently. I’m pretty close to vegan, although it’s difficult with such good cheese we have in this country. But the way it came about is interesting as well. It’s not just me. It’s myself, my wife, my daughter, and my son. The third child is never gonna become vegetarian I don’t think. But that’s not bad, four out of five.

In terms of what I think you can do and also points to things that we perhaps don’t think about contributing, being a voice, vis a vis others in our own communities and explaining why you do what you do in terms of biking and so on so forth. I think that really encourages others to do the same. It can grow a lot like that. In that vein, I teach as much as I can to high school students. I talk to them about Drawdown. I talk to them about solutions and so on. They get it. They are very very switched on about this. I really enjoy that. You really see, it’s their future, it’s their generation. They don’t have very much choice unfortunately. On a more positive note, I think they can really take it away in terms of a lot of actions which we haven’t done enough of.

Ariel: Well I wanted to mention this stuff because going back to your idea, this trickle up, I’m still hopeful that if people take action that that will start to force governments to. One final question on that note, did you guys find yourselves struggling with any of these changes or did you find them pretty easy to make?

Alexander: I think all of them were easy. Switching your energy to wind power, et cetera. Buying more consciously. It comes naturally. I was already vegetarian, and then moving to vegan, just go online and read it about it and how to do it. I remember when I was a kid that hardly anybody was vegetarian. Then I once discussed it with my mother and she said, “Oh it’s really difficult because then you need to totally balance your food and be in touch with your doctor, whatever.” I’ve never spoken to any doctor. I just stopped eating meat and now I … Years ago I swore out all dairy. I’ve never been ill. I don’t feel ill. Actually I feel better. It is not complicated. The rather complicated thing is flying, there are sometimes I have to make difficult choices like being for a long time away from home, I saved quite a bit on that part. That’s sometimes more complicated or, like soon I’ll be in a nearly eight hour train ride in something I could have flown in an hour.

John: I totally agree. I mean I enjoy being in a train, being able to work and not be worried about some truck running into you or the other foibles of driving which I find very very … I’ve got to a point where I’m becoming actually quite a bad driver. I drive so little that, I hope not, but I might have an accident.

Ariel: Well fingers crossed that doesn’t happen. Amd good. That’s been my experience so far too. The changes that I’ve been trying to make haven’t been difficult. I hope that’s an important point for people to realize. Anything else you want to add either of you?

Alexander: I think there’s just one thing that we didn’t touch on, on what you can do individually. That’s perhaps the most important one for us in democratic countries. That is vote. Vote for the best party that actually takes care of our long-term future, a party that aims for taking rapidly the right climate change measures. A party that wants to invest in a new economy that sees that if you invest now, you can be a leader later.

There is, in some countries, you have a lot of parties and there is all kinds of nuances. In other countries you have to deal with basically two parties, where just the one part is absolutely denying science and is doing exactly the wrong things and are basically aiming to ruin the planet as soon as possible, whereas the other party is actually looking for solutions. Well if you live in a country like that, and there are coincidentally soon elections coming up, vote for the party that takes the best positions on this because it is about the future of your children. It is the single most important influential thing that you can do, certainly if you live in a country where the emissions that the country produces are still among the highest in the world. Vote. Take people with you to do it.

Ariel: Yeah, so to be more specific about that, as I mentioned at the start this podcast, it’s coming out on Halloween, which means in the US, elections are next week. Please vote.

John: Yeah. Perhaps something else is how you invest, where your money is going. That’s one that can have a lot of impact as well. All I can say is, I hate to come back to Drawdown, but go through the Drawdown and think about your investments and say, okay, renewables whether it’s LEDs or whatever technology it is, if it’s in Drawdown, make sure it’s in your investment portfolio. If it’s not, you might want to get out of it, particularly the ones that we already know are causing the problem in the first place.

Ariel: That’s actually, that’s a good reminder. That’s something that has been on my list of things to do. I know I’m guilty of not investing in the proper companies at the moment. That’s something I’ve been wanting to fix.

Alexander: And tell your pension funds: divest from fossil fuels and invest in renewables and all kinds of good things that we need in the new economy.

John: But not necessarily because you’re doing it as a charitable cause, but really because these are the businesses of the future. We talked earlier about growth that these different businesses can take. Another factor that’s really important is efficiency. For instance, I’m sure you have heard of The Impossible Burger. It’s a plant-based burger. Now what do you think is the difference in terms of the amount of crop land required to produce a beef burger versus an impossible burger?

Alexander: I would say one in 25 or one in 35, but at range.

John: Yeah, so it’s one in 20. The thing is that when you look at that type of gain in efficiency, it’s just a question of time. A cow simply can’t compete. You have to cut down the trees to grow the animal feed that you ship to the cow, that the cow then eats. Then you have to wait a number of years, and that’s that 20 factor difference in efficiency. Now our capitalist economic system doesn’t like inefficient systems. You can try to make that cow as efficient as possible, you’re never going to be able to compete with a plant-based burger. Anybody who thinks that that plant-based burger isn’t going to displace the meat burger should really think again.

Ariel: All right, I think we’re ending on a nice hopeful note. So I want to thank you both for coming on today and talking about all of these issues.

Alexander: Thanks Ariel. It was nice to talk.

John: Thank you very much.

Ariel: If you enjoyed this podcast, please take a moment to like it and share it, and maybe even leave a positive review. And o f course, if you haven’t already, please follow us. You can find the FLI podcast on iTunes, Google Play, SoundCloud, and Stitcher.

[end of recorded material]

An image of Hurricane Michael making landfall October 11, 2018. Photo courtesy of NASA.

IPCC 2018 Special Report Paints Dire — But Not Completely Hopeless — Picture of Future

On Wednesday, October 10, the panhandle of Florida was struck by Hurricane Michael, which has already claimed over 30 lives and destroyed communities, homes and infrastructure across multiple states. Michael is the strongest hurricane in recorded history to make landfall in that region. And in coming years, it’s likely that we’ll continue to see an increase in record breaking storms — as well as record-breaking heat waves, droughts, floods, and wildfires.

Only two days before Michael unleashed its devastation on the United States, the United Nations International Panel on Climate Change (IPCC) released a dire report on the prospects for maintaining global temperature rise to 1.5°C—and why we must meet this challenge head on.

In 2015, roughly during the time that the Paris Climate Agreement was being signed, global temperatures reached 1°C above pre-industrial levels. And we’re already feeling the impacts of this increase in the form of bigger storms, bigger wildfires, higher temperatures, melting arctic ice, etc.

The recent IPCC report concludes that, if society continues on its current trajectory — and even if the world abides by the Paris Climate Agreement — the planet will hit 1.5°C of warming in a matter of decades, and possibly in the next 12 years. And every half degree more that temperatures rises is expected to bring on even more extreme effects. Even if we can limit global warming to 1.5°C, the report predicts we’ll lose most coral reefs, sea levels will rise and flood many coastal communities, more people around the world will experience extreme heat waves, and other natural disasters can be expected to increase.

As global temperatures rise, they don’t rise evenly across the globe. Land air is expected to reach higher temperatures than that over the oceans, so what could be 1.5°C on average across earth, might be a 3-4.5°C increase in some sections of the world. This has the potential to trigger deadly heat waves, wildfires and droughts, which would also negatively impact local ecosystems and farmland.

But what about if we reach 2°C? This level of temperature increase is often floated as the highest limit the world can handle without too much suffering – but how much worse will it be than 1.5°C?

A difference of 0.5°C may not seem like much, but it could mean the difference between a world with some surviving coral reefs, and a world in which they — and many other species — are all destroyed. Two degrees could lead to an extra 420 million people experiencing extreme and possibly deadly heat waves. Some regions of the world will see increases in temperatures as high as 4-6°C. Sea levels are predicted to rise an extra 10 centimeters at 2°C versus 1.5°C, which could impact an extra 10 million people along coastal areas.

Meanwhile, human health will deteriorate; diseases like malaria and dengue fever could become more prevalent and spread into new regions with this increase in temperature. Farmland for many staple crops could decrease, and even livestock are expected to be adversely affected as feed quality and water availability may decrease.

The list goes on and on. But perhaps one of the greatest threats of climate change is that those who will likely be the hardest hit by increasing temperatures are those who are already among the poorest and most vulnerable.

Yet we’re not quite out of time. As the report highlights, all of these problems arise as a result of society taking little to no action. But what if we did start taking steps to reduce global warming? What if we could get governments and corporations to recognize the need to reduce emissions and switch to clean, alternative, renewable energy sources? What if individuals made changes to their own lifestyles while also encouraging their government leaders to take action?

The report suggests that under those circumstances, if we can achieve global net-zero emissions — that is, such low levels of carbon or other pollutants are emitted that they can be absorbed by trees and soil — then we can still prevent temperatures from exceeding 1.5°C. Temperatures will still increase somewhat as a result of current emissions, but there’s still time to curtail the most severe effects.

There are other organizations that believe we can achieve global net-zero emissions as well. For example, this summer, the Exponential Climate Action Roadmap was released, which offers a roadmap to achieve the goals of the Paris Climate Agreement by 2030. Or there’s The Solutions Project, which maps out steps to quickly achieve 100% renewable energy. And Drawdown provides 80 steps we can take to reduce emissions.

We don’t have much time left, but it’s not too late. The prospects are dire if we continue on our current trajectory, but if society can recognize the urgency of the situation and come together to take action, there’s still hope of keeping the worst effects of climate change at bay.

An edited version of this article was originally published on Metro. Photo courtesy of NASA.

Podcast: Martin Rees on the Prospects for Humanity: AI, Biotech, Climate Change, Overpopulation, Cryogenics, and More

How can humanity survive the next century of climate change, a growing population, and emerging technological threats? Where do we stand now, and what steps can we take to cooperate and address our greatest existential risks?

In this special podcast episode, Ariel speaks with Martin Rees about his new book, On the Future: Prospects for Humanity, which discusses humanity’s existential risks and the role that technology plays in determining our collective future. Martin is a cosmologist and space scientist based in the University of Cambridge. He is director of The Institute of Astronomy and Master of Trinity College, and he was president of The Royal Society, which is the UK’s Academy of Science, from 2005 to 2010. In 2005 he was also appointed to the UK’s House of Lords.

Topics discussed in this episode include:

  • Why Martin remains a technical optimist even as he focuses on existential risks
  • The economics and ethics of climate change
  • How AI and automation will make it harder for Africa and the Middle East to economically develop
  • How high expectations for health care and quality of life also put society at risk
  • Why growing inequality could be our most underappreciated global risk
  • Martin’s view that biotechnology poses greater risk than AI
  • Earth’s carrying capacity and the dangers of overpopulation
  • Space travel and why Martin is skeptical of Elon Musk’s plan to colonize Mars
  • The ethics of artificial meat, life extension, and cryogenics
  • How intelligent life could expand into the galaxy
  • Why humans might be unable to answer fundamental questions about the universe

Books and resources discussed in this episode include

You can listen to the podcast above and read the full transcript below. Check out our previous podcast episodes on SoundCloudiTunesGooglePlay, and Stitcher.

Ariel: Hello, I am Ariel Conn with The Future of Life Institute. Now, our podcasts lately have dealt with artificial intelligence in some way or another, and with a few focusing on nuclear weapons, but FLI is really an organization about existential risks, and especially x-risks that are the result of human action. These cover a much broader field than just artificial intelligence.

I’m excited to be hosting a special segment of the FLI podcast with Martin Rees, who has just come out with a book that looks at the ways technology and science could impact our future both for good and bad. Martin is a cosmologist and space scientist. His research interests include galaxy formation, active galactic nuclei, black holes, gamma ray bursts, and more speculative aspects of cosmology. He’s based in Cambridge where he has been director of The Institute of Astronomy, and Master of Trinity College. He was president of The Royal Society, which is the UK’s Academy of Science, from 2005 to 2010. In 2005 he was also appointed to the UK’s House of Lords. He holds the honorary title of Astronomer Royal. He has received many international awards for his research and belongs to numerous academies, including The National Academy of Sciences, the Russian Academy, the Japan Academy, and the Pontifical Academy.

He’s on the board of The Princeton Institute for Advanced Study, and has served on many bodies connected with international collaboration and science, especially threats stemming from humanity’s ever heavier footprint on the planet and the runaway consequences of ever more powerful technologies. He’s written seven books for the general public, and his most recent book is about these threats. It’s the reason that I’ve asked him to join us today. First, Martin thank you so much for talking with me today.

Martin: Good to be in touch.

Ariel: Your new book is called On the Future: Prospects for Humanity. In his endorsement of the book Neil deGrasse Tyson says, “From climate change, to biotech, to artificial intelligence, science sits at the center of nearly all decisions that civilization confronts to assure its own survival.”

I really liked this quote, because I felt like it sums up what your book is about. Basically science and the future are too intertwined to really look at one without the other. And whether the future turns out well, or whether it turns out to be the destruction of humanity, science and technology will likely have had some role to play. First, do you agree with that sentiment? Am I accurate in that description?

Martin: No, I certainly agree, and that’s truer of this century than ever before because of greater scientific knowledge we have, and the greater power to use it for good or ill, because the technologies allow tremendously advanced technologies which could be misused by a small number of people.

Ariel: You’ve written in the past about how you think we have essentially a 50/50 chance of some sort of existential risk. One of the things that I noticed about this most recent book is you talk a lot about the threats, but to me it felt still like an optimistic book. I was wondering if you could talk a little bit about, this might be jumping ahead a bit, but maybe what the overall message you’re hoping that people take away is?

Martin: Well, I describe myself as a technical optimist, but political pessimist because it is clear that we couldn’t be living such good lives today with seven and a half billion people on the planet if we didn’t have the technology which has been developed in the last 100 years, and clearly there’s a tremendous prospect of better technology in the future. But on the other hand what is depressing is the very big gap between the way the world could be, and the way the world actually is. In particular, even though we have the power to give everyone a decent life, the lot of the bottom billion people in the world is pretty miserable and could be alleviated a lot simply by the money owned by the 1,000 richest people in the world.

We have a very unjust society, and the politics is not optimizing the way technology is used for human benefit. My view is that it’s the politics which is an impediment to the best use of technology, and the reason this is important is that as time goes on we’re going to have a growing population which is ever more demanding of energy and resources, putting more pressure on the planet and its environment and its climate, but we are also going to have to deal with this if we are to allow people to survive and avoid some serious tipping points being crossed.

That’s the problem of the collective effect of us on the planet, but there’s another effect, which is that these new technologies, especially bio, cyber, and AI allow small groups of even individuals to have an effect by error or by design, which could cascade very broadly, even globally. This, I think, makes our society very brittle. We’re very interdependent, and on the other hand it’s easy for there to be a breakdown. That’s what depresses me, the gap between the way things could be, and the downsides if we collectively overreach ourselves, or if individuals cause disruption.

Ariel: You mentioned actually quite a few things that I’m hoping to touch on as we continue to talk. I’m almost inclined, before we get too far into some of the specific topics, to bring up an issue that I personally have. It’s connected to a comment that you make in the book. I think you were talking about climate change at the time, and you say that if we heard that there was 10% chance that an asteroid would strike in 2100 people would do something about it.

We wouldn’t say, “Oh, technology will be better in the future so let’s not worry about it now.” Apparently I’m very cynical, because I think that’s exactly what we would do. And I’m curious, what makes you feel more hopeful that even with something really specific like that, we would actually do something and not just constantly postpone the problem to some future generation?

Martin: Well, I agree. We might not even in that case, but the reason I gave that as a contrast to our response to climate change is that there you could imagine a really sudden catastrophe happening if the asteroid does hit, whereas the problem with climate change is really that it’s first of all, the effect is mainly going to be several decades in the future. It’s started to happen, but the really severe consequences are decades away. But also there’s an uncertainty, and it’s not a sort of sudden event we can easily visualize. It’s not at all clear therefore, how we are actually going to do something about it.

In the case of the asteroid, it would be clear what the strategy would be to try and deal with it, whereas in the case of climate there are lots of ways, and the problem is that the consequences are decades away, and they’re global. Most of the political focus obviously is on short-term worry, short-term problems, and on national or more local problems. Anything we do about climate change will have an effect which is mainly for the benefit of people in quite different parts of the world 50 years from now, and it’s hard to keep those issues up the agenda when there are so many urgent things to worry about.

I think you’re maybe right that even if there was a threat of an asteroid, there may be the same sort of torpor, and we’d fail to deal with it, but I thought that’s an example of something where it would be easier to appreciate that it would really be a disaster. In the case of the climate it’s not so obviously going to be a catastrophe that people are motivated now to start thinking about it.

Ariel: I’ve heard it go both ways that either climate change is yes, obviously going to be bad but it’s not an existential risk so therefore those of us who are worried about existential risk don’t need to worry about it, but then I’ve also heard people say, “No, this could absolutely be an existential risk if we don’t prevent runaway climate change.” I was wondering if you could talk a bit about what worries you most regarding climate.

Martin: First of all, I don’t think it is an existential risk, but it’s something we should worry about. One point I make in my book is that I think the debate, which makes it hard to have an agreed policy on climate change, stems not so much from differences about the science — although of course there are some complete deniers — but differences about ethics and economics. There’s some people of course who completely deny the science, but most people accept that CO2 is warming the planet, and most people accept there’s quite a big uncertainty, matter of fact a true uncertainty about how much warmer you get for a given increase in CO2.

But even among those who accept the IPCC projections of climate change, and the uncertainties therein, I think there’s a big debate, and the debate is really between people who apply a standard economic discount rate where you discount the future to a rate of, say 5%, and those who think we shouldn’t do it in this context. If you apply a 5% discount rate as you would if you were deciding whether it’s worth putting up an office building or something like that, then of course you don’t give any weight to what happens after about, say 2050.

As Bjorn Lomborg, the well-known environmentalist argues, we should therefore give a lower priority to dealing with climate change than to helping the world’s poor in other more immediate ways. He is consistent given his assumptions about the discount rate. But many of us would say that in this context we should not discount the future so heavily. We should care about the life chances of a baby born today as much as we should care about the life chances of those of us who are now middle aged and won’t be alive at the end of the century. We should also be prepared to pay an insurance premium now in order to remove or reduce the risk of the worst case climate scenarios.

I think the debates about what to do about climate change is essentially ethics. Do we want to discriminate on grounds of date of birth and not care about the life chances of those who are now babies, or are we prepared to make some sacrifices now in order to reduce a risk which they might encounter in later life?

Ariel: Do you think the risks are only going to be showing up that much later? We are already seeing these really heavy storms striking. We’ve got Florence in North Carolina right now. There’s a super typhoon hit southern China and the Philippines. We had Maria, and I’m losing track of all the hurricanes that we’ve had. We’ve had these huge hurricanes over the last couple of years. We saw California and much of the west coast of the US just on flames this year. Do you think we really need to wait that long?

Martin: I think it’s generally agreed that extreme weather is now happening more often as a consequence of climate change and the warming of the ocean, and that this will become a more serious trend, but by the end of the century of course it could be very serious indeed. And the main threat is of course to people in the disadvantaged parts of the world. If you take these recent events, it’s been far worse in the Philippines than in the United States because they’re not prepared for it. Their houses are more fragile, etc.

Ariel: I don’t suppose you have any thoughts on how we get people to care more about others? Because it does seem to be in general that sort of worrying about myself versus worrying about other people. The richer countries are the ones who are causing more of the climate change, and it’s the poorer countries who seem to be suffering more. Then of course there’s the issue of the people who are alive now versus the people in the future.

Martin: That’s right, yes. Well, I think most people do care about their children and grandchildren, and so to that extent they do care about what things will be like at the end of the century, but as you say, the extra-political problem is that the cause of the CO2 emissions is mainly what’s happened in the advanced countries, and the downside is going to be more seriously felt by those in remote parts of the world. It’s easy to overlook them, and hard to persuade people that we ought to make a sacrifice which will be mainly for their benefit.

I think incidentally that’s one of the other things that we have to ensure happens, is a narrowing of the gap between the lifestyles and the economic advantages in the advanced and the less advanced parts of the world. I think that’s going to be in everyone’s interest because if there continues to be great inequality, not only will the poorer people be more subject to threats like climate change, but I think there’s going to be massive and well-justified discontent, because unlike in the earlier generations, they’re aware of what they’re missing. They all have mobile phones, they all know what it’s like, and I think there’s going to be embitterment leading to conflict if we don’t narrow this gap, and this requires I think a sacrifice on the part of the wealthy nations to subsidize developments in these poorer countries, especially in Africa.

Ariel: That sort of ties into another question that I had for you, and that is, what do you think is the most underappreciated threat that maybe isn’t quite as obvious? You mentioned the fact that we have these people in poorer countries who are able to more easily see what they’re missing out on. Inequality is a problem in and of itself, but also just that people are more aware of the inequality seems like a threat that we might not be as aware of. Are there others that you think are underappreciated?

Martin: Yes. Just to go back, that threat is of course very serious because by the end of the century there might be 10 times as many people in Africa as in Europe, and of course they would then have every justification in migrating towards Europe with the result of huge disruption. We do have to care about those sorts of issues. I think there are all kinds of reasons apart from straight ethics why we should ensure that the less developed countries, especially in Africa, do have a chance to close the gap.

Incidentally, one thing which is a handicap for them is that they won’t have the route to prosperity followed by the so called “Asian tigers,” which were able to have high economic growth by undercutting the labor cost in the west. Now what’s happening is that with robotics it’s possible to, as it were, re-shore lots of manufacturing industry back to wealthy countries, and so Africa and the Middle East won’t have the same opportunity the far eastern countries did to catch up by undercutting the cost of production in the west.

This is another reason why it’s going to be a big challenge. That’s something which I think we don’t worry about enough, and need to worry about, because if the inequalities persist when everyone is able to move easily and knows exactly what they’re missing, then that’s a recipe for a very dangerous and disruptive world. I would say that is an underappreciated threat.

Another thing I would count as important is that we are as a society very brittle, and very unstable because of high expectations. I’d like to give you another example. Suppose there were to be a pandemic, not necessarily a genetically engineered terrorist one, but a natural one. Then in contrast to what happened in the 14th century when the Bubonic Plague, the Black Death, occurred and killed nearly half the people in certain towns and the rest went on fatalistically. If we had some sort of plague which affected even 1% of the population of the United States, there’d be complete social breakdown, because that would overwhelm the capacity of hospitals, and people, unless they are wealthy, would feel they weren’t getting their entitlement of healthcare. And if that was a matter of life and death, that’s a recipe for social breakdown. I think given the high expectations of people in the developed world, then we are far more vulnerable to the consequences of these breakdowns, and pandemics, and the failures of electricity grids, et cetera, than in the past when people were more robust and more fatalistic.

Ariel: That’s really interesting. Is it essentially because we expect to be leading these better lifestyles, just that expectation could be our downfall if something goes wrong?

Martin: That’s right. And of course, if we know that there are cures available to some disease and there’s not the hospital capacity to offer it to all the people who are afflicted with the disease, then naturally that’s a matter of life and death, and that is going to promote social breakdown. This is a new threat which is of course a downside of the fact that we can at least cure some people.

Ariel: There’s two directions that I want to go with this. I’m going to start with just transitioning now to biotechnology. I want to come back to issues of overpopulation and improving healthcare in a little bit, but first I want to touch on biotech threats.

One of the things that’s been a little bit interesting for me is that when I first started at FLI three years ago we were very concerned about biotechnology. CRISPR was really big. It had just sort of exploded onto the scene. Now, three years later I’m not hearing quite as much about the biotech threats, and I’m not sure if that’s because something has actually changed, or if it’s just because at FLI I’ve become more focused on AI and therefore stuff is happening but I’m not keeping up with it. I was wondering if you could talk a bit about what some of the risks you see today are with respect to biotech?

Martin: Well, let me say I think we should worry far more about bio threats than about AI in my opinion. I think as far as the bio threats are concerned, then there are these new techniques. CRISPR, of course, is a very benign technique if it’s used to remove a single damaging gene that gives you a particular disease, and also it’s less objectionable than traditional GM because it doesn’t cross the species barrier in the same way, but it does allow things like a gene drive where you make a species extinct by making it sterile.

That’s good if you’re wiping out a mosquito that carries a deadly virus, but there’s a risk of some effect which distorts the ecology and has a cascading consequence. There are risks of that kind, but more important I think there is a risk of the misuse of these techniques, and not just CRISPR, but for instance the the gain of function techniques that we used in 2011 in Wisconsin and in Holland to make influenza virus both more virulent and more transmissible, things like that which can be done in a more advanced way now I’m sure.

These are clearly potentially dangerous, even if experimenters have a good motive, then the viruses might escape, and of course they are the kinds of things which could be misused. There have, of course, been lots of meetings, you have been at some, to discuss among scientists what the guidelines should be. How can we ensure responsible innovation in these technologies? These are modeled on the famous Conference in Asilomar in the 1970s when recombinant DNA was first being discussed, and the academics who worked in that area, they agreed on a sort of cautious stance, and a moratorium on some kinds of experiments.

But now they’re trying to do the same thing, and there’s a big difference. One is that these scientists are now more global. It’s not just a few people in North America and Europe. They’re global, and there is strong commercial pressures, and they’re far more widely understood. Bio-hacking is almost a student recreation. This means, in my view, that there’s a big danger, because even if we have regulations about certain things that can’t be done because they’re dangerous, enforcing those regulations globally is going to be as hopeless as it is now to enforce the drug laws, or to enforce the tax laws globally. Something which can be done will be done by someone somewhere, whatever the regulations say, and I think this is very scary. Consequences could cascade globally.

Ariel: Do you think that the threat is more likely to come from something happening accidentally, or intentionally?

Martin: I don’t know. I think it could be either. Certainly it could be something accidental from gene drive, or releasing some dangerous virus, but I think if we can imagine it happening intentionally, then we’ve got to ask what sort of people might do it? Governments don’t use biological weapons because you can’t predict how they will spread and who they’d actually kill, and that would be an inhibiting factor for any terrorist group that had well-defined aims.

But my worst nightmare is some person, and there are some, who think that there are too many human beings on the planet, and if they combine that view with the mindset of extreme animal rights people, etc, they might think it would be a good thing for Gaia, for Mother Earth, to get rid of a lot of human beings. They’re the kind of people who, with access to this technology, might have no compunction in releasing a dangerous pathogen. This is the kind of thing that worries me.

Ariel: I find that interesting because it ties into the other question that I wanted to ask you about, and that is the idea of overpopulation. I’ve read it both ways, that overpopulation is in and of itself something of an existential risk, or a catastrophic risk, because we just don’t have enough resources on the planet. You actually made an interesting point, I thought, in your book where you point out that we’ve been thinking that there aren’t enough resources for a long time, and yet we keep getting more people and we still have plenty of resources. I thought that was sort of interesting and reassuring.

But I do think at some point that does become an issue. At then at the same time we’re seeing this huge push, understandably, for improved healthcare, and expanding life spans, and trying to save as many lives as possible, and making those lives last as long as possible. How do you resolve those two sides of the issue?

Martin: It’s true, of course, as you imply, that the population has risen double in the last 50 years, and there were doomsters who in the 1960s and ’70s thought that mass starvation by now, and there hasn’t been because food production has more than kept pace. If there are famines today, as of course there are, it’s not because of overall food shortages. It’s because of wars, or mal-distribution of money to buy the food. Up until now things have gone fairly well, but clearly there are limits to the food that can be produced on the earth.

All I would say is that we can’t really say what the carrying capacity of the earth is, because it depends so much on the lifestyle of people. As I say in the book, the world couldn’t sustainably have 2 billion people if they all lived like present day Americans, using as much energy, and burning as much fossil fuels, and eating as much beef. On the other hand you could imagine lifestyles which are very sort of austere, where the earth could carry 10, or even 20 billion people. We can’t set an upper limit, but all we can say is that given that it’s fairly clear that the population is going to rise to about 9 billion by 2050, and it may go on rising still more after that, we’ve got to ensure that the way in which the average person lives is less profligate in terms of energy and resources, otherwise there will be problems.

I think we also do what we can to ensure that after 2050 the population turns around and goes down. The base scenario is when it goes on rising as it may if people choose to have large families even when they have the choice. That could happen, and of course as you say, life extension is going to have an affect on society generally, but obviously on the overall population too. I think it would be more benign if the population of 9 billion in 2050 was a peak and it started going down after that.

And it’s not hopeless, because the actual number of births per year has already started going down. The reason the population is still going up is because more babies survive, and most of the people in the developing world are still young, and if they live as long as people in advanced countries do, then of course that’s going to increase the population even for a steady birth rate. That’s why, unless there’s a real disaster, we can’t avoid the population rising to about 9 billion.

But I think policies can have an affect on what happens after that. I think we do have to try to make people realize that having large numbers of children has negative externalities, as it were in economic jargon, and it is going to be something to put extra pressure on the world, and affects our environment in a detrimental way.

Ariel: As I was reading this, especially as I was reading your section about space travel, I want to ask you about your take on whether we can just start sending people to Mars or something like that to address issues of overpopulation. As I was reading your section on that, news came out that Elon Musk and SpaceX had their first passenger for a trip around the moon, which is now scheduled for 2023, and the timing was just entertaining to me, because like I said you have a section in your book about why you don’t actually agree with Elon Musk’s plan for some of this stuff.

Martin: That’s right.

Ariel: I was hoping you could talk a little bit about why you’re not as big a plan of space tourism, and what you think of humanity expanding into the rest of the solar system and universe?

Martin: Well, let me say that I think it’s a dangerous delusion to think we can solve the earth’s problems by escaping to Mars or elsewhere. Mass emigration is not feasible. There’s nowhere in the solar system which is as comfortable to live in as the top of Everest or the South Pole. I think the idea which was promulgated by Elon Musk and Stephen Hawking of mass emigration is, I think, a dangerous delusion. The world’s problems have to be solved here, dealing with climate change is a dawdle compared to terraforming Mars. SoI don’t think that’s true.

Now, two other things about space. The first is that the practical need for sending people into space is getting less as robots get more advanced. Everyone has seen pictures of the Curiosity Probe trundling across the surface of Mars, and maybe missing things that a geologist would notice, but future robots will be able to do much of what a human will do, and to manufacture large structures in space, et cetera, so the practical need to send people to space is going down.

On the other hand, some people may want to go simply as an adventure. It’s not really tourism, because tourism implies it’s safe and routine. It’ll be an adventure like Steve Fossett or the guy who fell supersonically from an altitude balloon. It’d be crazy people like that, and maybe this Japanese tourist is in the same style, who want to have a thrill, and I think we should cheer them on.

I think it would be good to imagine that there are a few people living on Mars, but it’s never going to be as comfortable as our Earth, and we should just cheer on people like this.

And I personally think it should be left to private money. If I was an American, I would not support the NASA space program. It’s very expensive, and it could be undercut by private companies which can afford to take higher risks than NASA could inflict on publicly funded civilians. I don’t think NASA should be doing manned space flight at all. Of course, some people would say, “Well, it’s a national aspiration, a national goal to show superpower pre-eminence by a massive space project.” That was, of course, what drove the Apollo program, and the Apollo program cost about 4% of The US federal budget. Now NASA has .6% or thereabouts. I’m old enough to remember the Apollo moon landings, and of course if you would have asked me back then, I would have expected that there might have been people on Mars within 10 or 15 years at that time.

There would have been, had the program been funded, but of course there was no motive, because the Apollo program was driven by superpower rivalry. And having beaten the Russians, it wasn’t pursued with the same intensity. It could be that the Chinese will, for prestige reasons, want to have a big national space program, and leapfrog what the Americans did by going to Mars. That could happen. Otherwise I think the only manned space flight will, and indeed should, be privately funded by adventurers prepared to go on cut price and very risky missions.

But we should cheer them on. The reason we should cheer them on is that if in fact a few of them do provide some sort of settlement on Mars, then they will be important for life’s long-term future, because whereas we are, as humans, fairly well adapted to the earth, they will be in a place, Mars, or an asteroid, or somewhere, for which they are badly adapted. Therefore they would have every incentive to use all the techniques of genetic modification, and cyber technology to adapt to this hostile environment.

A new species, perhaps quite different from humans, may emerge as progeny of those pioneers within two or three centuries. I think this is quite possible. They, of course, may download themselves to be electronic. We don’t know how it’ll happen. We all know about the possibilities of advanced intelligence in electronic form. But I think this’ll happen on Mars, or in space, and of course if we think about going further and exploring beyond our solar system, then of course that’s not really a human enterprise because of human life times being limited, but it is a goal that would be feasible if you were a near immortal electronic entity. That’s a way in which our remote descendants will perhaps penetrate beyond our solar system.

Ariel: As you’re looking towards these longer term futures, what are you hopeful that we’ll be able to achieve?

Martin: You say we, I think we humans will mainly want to stay on the earth, but I think intelligent life, even if it’s not out there already in space, could spread through the galaxy as a consequence of what happens when a few people who go into space and are away from the regulators adapt themselves to that environment. Of course, one thing which is very important is to be aware of different time scales.

Sometimes you hear people talk about humans watching the death of the sun in five billion years. That’s nonsense, because the timescale for biological evolution by Darwinian selection is about a million years, thousands of times shorter than the lifetime of the sun, but more importantly the time scale for this new kind of intelligent design, when we can redesign humans and make new species, that time scale is a technological time scale. It could be only a century.

It would only take one, or two, or three centuries before we have entities which are very different from human beings if they are created by genetic modification, or downloading to electronic entities. They won’t be normal humans. I think this will happen, and this of course will be a very important stage in the evolution of complexity in our universe, because we will go from the kind of complexity which has emerged by Darwinian selection, to something quite new. This century is very special, which is a century where we might be triggering or jump starting a new kind of technological evolution which could spread from our solar system far beyond, on the timescale very short compared to the time scale for Darwinian evolution and the time scale for astronomical evolution.

Ariel: All right. In the book you spend a lot of time also talking about current physics theories and how those could evolve. You spend a little bit of time talking about multiverses. I was hoping you could talk a little bit about why you think understanding that is important for ensuring this hopefully better future?

Martin: Well, it’s only peripherally linked to it. I put that in the book because I was thinking about, what are the challenges, not just challenges of a practical kind, but intellectual challenges? One point I make is that there are some scientific challenges which we are now confronting which may be beyond human capacity to solve, because there’s no particular reason to think that the capacity of our brains is matched to understanding all aspects of reality any more than a monkey can understand quantum theory.

It’s possible that there be some fundamental aspects of nature that humans will never understand, and they will be a challenge for post-humans. I think those challenges are perhaps more likely to be in the realm of complexity, understanding the brain for instance, than in the context of cosmology, although there are challenges in cosmology which is to understand the very early universe where we may need a new theory like string theory with extra dimensions, et cetera, and we need a theory like that in order to decide whether our big bang was the only one, or whether there were other big bangs and a kind of multiverse.

It’s possible that in 50 years from now we will have such a theory, we’ll know the answers to those questions. But it could be that there is such a theory and it’s just too hard for anyone to actually understand and make predictions from. I think these issues are relevant to the intellectual constraints on humans.

Ariel: Is that something that you think, or hope, that things like more advanced artificial intelligence or however we evolve in the future, that that evolution will allow “us” to understand some of these more complex ideas?

Martin: Well, I think it’s certainly possible that machines could actually, in a sense, create entities based on physics which we can’t understand. This is perfectly possible, because obviously we know they can vastly out-compute us at the moment, so it could very well be, for instance, that there is a variant of string theory which is correct, and it’s just too difficult for any human mathematician to work out. But it could be that computers could work it out, so we get some answers.

But of course, you then come up against a more philosophical question about whether competence implies comprehension, whether a computer with superhuman capabilities is necessarily going to be self-aware and conscious, or whether it is going to be just a zombie. That’s a separate question which may not affect what it can actually do, but I think it does affect how we react to the possibility that the far future will be dominated by such things.

I remember when I wrote an article in a newspaper about these possibilities, the reaction was bimodal. Some people thought, “Isn’t it great there’ll be these even deeper intellects than human beings out there,” but others who thought these might just be zombies thought it was very sad if there was no entity which could actually appreciate the beauties and wonders of nature in the way we can. It does matter, in a sense, to our perception of this far future, if we think that these entities which may be electronic rather than organic, will be conscious and will have the kind of awareness that we have and which makes us wonder at the beauty of the environment in which we’ve emerged. I think that’s a very important question.

Ariel: I want to pull things back to a little bit more shorter term I guess, but still considering this idea of how technology will evolve. You mentioned that you don’t think it’s a good idea to count on going to Mars as a solution to our problems on Earth because all of our problems on Earth are still going to be easier to solve here than it is to populate Mars. I think in general we have this tendency to say, “Oh, well in the future we’ll have technology that can fix whatever issue we’re dealing with now, so we don’t need to worry about it.”

I was wondering if you could sort of comment on that approach. To what extent can we say, “Well, most likely technology will have improved and can help us solve these problems,” and to what extent is that a dangerous approach to take?

Martin: Well, clearly technology has allowed us to live much better, more complex lives than we could in the past, and on the whole the net benefits outweigh the downsides, but of course there are downsides, and they stem from the fact that we have some people who are disruptive, and some people who can’t be trusted. If we had a world where everyone could trust everyone else, we could get rid of about a third of the economy I would guess, but I think the main point is that we are very vulnerable.

We have huge advances, clearly, in networking via the Internet, and computers, et cetera, and we may have the Internet of Things within a decade, but of course people worry that this opens up a new kind of even more catastrophic potential for cyber terrorism. That’s just one example, and ditto for biotech which may allow the development of pathogens which kill people of particular races, or have other effects.

There are these technologies which are developing fast, and they can be used to great benefit, but they can be misused in ways that will provide new kinds of horrors that were not available in the past. It’s by no means obvious which way things will go. Will there be a continued net benefit of technology, as I think we’ve said there as been up ’til now despite nuclear weapons, et cetera, or will at some stage the downside run ahead of the benefits.

I do worry about the latter being a possibility, particularly because of this amplification factor, the fact that it only takes a few people in order to cause disruption that could cascade globally. The world is so interconnected that we can’t really have a disaster in one region without its affecting the whole world. Jared Diamond has this book called Collapse where he discusses five collapses of particular civilizations, whereas other parts of the world were unaffected.

I think if we really had some catastrophe, it would affect the whole world. It wouldn’t just affect parts. That’s something which is a new downside. The stakes are getting higher as technology advances, and my book is really aimed to say that these developments are very exciting, but they pose new challenges, and I think particularly they pose challenges because a few dissidents can cause more trouble, and I think it’ll make the world harder to govern. It’ll make cities and countries harder to govern, and a stronger tension between three things we want to achieve, which is security, privacy, and liberty. I think that’s going to be a challenge for all future governments.

Ariel: Reading your book I very much got the impression that it was essentially a call to action to address these issues that you just mentioned. I was curious: what do you hope that people will do after reading the book, or learning more about these issues in general?

Martin: Well, first of all I hope that people can be persuaded to think long term. I mentioned that religious groups, for instance, tend to think long term, and the papal encyclical in 2015 I think had a very important effect on the opinion in Latin America, Africa, and East Asia in the lead up to the Paris Climate Conference, for instance. That’s an example where someone from outside traditional politics would have an effect.

What’s very important is that politicians will only respond to an issue if it’s prominent in the press, and prominent in their inbox, and so we’ve got to ensure that people are concerned about this. Of course, I ended the book saying, “What are the special responsibilities of scientists,” because scientists clearly have a special responsibility to ensure that their work is safe, and that the public and politicians are made aware of the implications of any discovery they make.

I think that’s important, even though they should be mindful that their expertise doesn’t extend beyond their special area. That’s a reason why scientific understanding, in a general sense, is something which really has to be universal. This is important for education, because if we want to have a proper democracy where debate about these issues rises above the level of tabloid slogans, then given that the important issues that we have to discuss involve health, energy, the environment, climate, et cetera, which have scientific aspects, then everyone has to have enough feel for those aspects to participate in a debate, and also enough feel for probabilities and statistics to be not easily bamboozled by political arguments.

I think an educated population is essential for proper democracy. Obviously that’s a platitude. But the education needs to include, to a greater extent, an understanding of the scope and limits of science and technology. I make this point at the end and hope that it will lead to a greater awareness of these issues, and of course for people in universities, we have a responsibility because we can influence the younger generation. It’s certainly the case that students and people under 30 may be alive towards the end of the century are more mindful of these concerns than the middle aged and old.

It’s very important that these activities like the Effective Altruism movement, 80,000 Hours, and these other movements among students should be encouraged, because they are going to be important in spreading an awareness of long-term concerns. Public opinion can be changed. We can see the change in attitudes to drunk driving and things like that, which have happened over a few decades, and I think perhaps we can have a more environmental sensitivity so to become regarded as sort of rather naff or tacky to waste energy, and to be extravagant in consumption.

I’m hopeful that attitudes will change in a positive way, but I’m concerned simply because the politics is getting very difficult, because with social media, panic and rumor can spread at the speed of light, and small groups can have a global effect. This makes it very, very hard to ensure that we can keep things stable given that only a few people are needed to cause massive disruption. That’s something which is new, and I think is becoming more and more serious.

Ariel: We’ve been talking a lot about things that we should be worrying about. Do you think there are things that we are currently worrying about that we probably can just let go of, that aren’t as big of risks?

Martin: Well, I think we need to ensure responsible innovation in all new technologies. We’ve talked a lot about bio, and we are very concerned about the misuse of cyber technology. As regards AI, of course there are a whole lot of concerns to be had. I personally think that the takeover AI would be rather slower than many of the evangelists suspect, but of course we do have to ensure that humans are not victimized by some algorithm which they can’t have explained to them.

I think there is an awareness to this, and I think that what’s being done by your colleagues at MIT has been very important in raising awareness of the need for responsible innovation and ethical application of AI, and also what your group has recognized is that the order in which things happen is very important. If some computer is developed and goes rogue, that’s bad news, whereas if we have a powerful computer which is under our control, then it may help us to deal with these other problems, the problems of the misuse of biotech, et cetera.

The order in which things happen is going to be very important, but I must say I don’t completely share these concerns about machines running away and taking over, ’cause I think there’s a difference in that, for biological evolution there’s been a drive toward intelligence being favored, but so is aggression. In the case of computers, they may drive towards greater intelligence, but it’s not obvious that that is going to be combined with aggression, because they are going to be evolving by intelligent design, not the struggle of the fittest, which is the way that we evolved.

Ariel: What about concerns regarding AI just in terms of being mis-programmed, and AI just being extremely competent? Poor design on our part, poor intelligent design?

Martin: Well, I think in the short term obviously there are concerns about AI making decisions that affect people, and I think most of us would say that we shouldn’t be deprived of our credit rating, or put in prison on the basis of some AI algorithm which can’t be explained to us. We are entitled to have an explanation if something is done to us against our will. That is why it is worrying if too much is going to be delegated to AI.

I also think that constraint on the development of self-driving cars, and things of that kind, is going to be constrained by the fact that these become vulnerable to hacking of various kinds. I think it’ll be a long time before we will accept a driverless car on an ordinary road. Controlled environments, yes. In particular lanes on highways, yes. In an ordinary road in a traditional city, it’s not clear that we will ever accept a driverless car. I think I’m frankly less bullish than maybe some of your colleagues about the speed at which the machines will really take over and be accepted, that we can trust ourselves to them.

Ariel: As I mentioned at the start, and as you mentioned at the start, you are a techno optimist, for as much as the book is about things that could go wrong it did feel to me like it was also sort of an optimistic look at the future. What are you most optimistic about? What are you most hopeful for looking at both short term and long term, however you feel like answering that?

Martin: I’m hopeful that biotech will have huge benefits for health, will perhaps extend human life spans a bit, but that’s something about which we should feel a bit ambivalent. So, I think health, and also food. If you asked me, what is one of the most benign technologies, it’s to make artificial meat, for instance. It’s clear that we can more easily feed a population of 9 billion on a vegetarian diet than on a traditional diet like Americans consume today.

To take one benign technology, I would say artificial meat is one, and more intensive farming so that we can feed people without encroaching too much on the natural part of the world. I’m optimistic about that. If we think about very long term trends then life extension is something which obviously if it happens too quickly is going to be hugely disruptive, multi-generation families, et cetera.

Also, even though we will have the capability within a century to change human beings, I think we should constrain that on earth and just let that be done by the few crazy pioneers who go away into space. But if this does happen, then as I say in the introduction to my book, it will be a real game changer in a sense. I make the point that one thing that hasn’t changed over most of human history is human character. Evidence for this is that we can read the literature written by the Greeks and Romans more than 2,000 years ago and resonate with the people, and their characters, and their attitudes and emotions.

It’s not at all clear that on some scenarios, people 200 years from now will resonate in anything other than an algorithmic sense with the attitudes we have as humans today. That will be a fundamental, and very fast change in the nature of humanity. The question is, can we do something to at least constrain the rate at which that happens, or at least constrain the way in which it happens? But it is going to be almost certainly possible to completely change human mentality, and maybe even human physique over that time scale. One has only to listen to listen to people like George Church to realize that it’s not crazy to imagine this happening.

Ariel: You mentioned in the book that there’s lots of people who are interested in cryogenics, but you also talked briefly about how there are some negative effects of cryogenics, and the burden that it puts on the future. I was wondering if you could talk really quickly about that?

Martin: There are some people, I know some, who have a medallion around their neck which is an injunction of, if they drop dead they should be immediately frozen, and their blood drained and replaced by liquid nitrogen, and that they should then be stored — there’s a company called Alcor in Arizona that does this — and allegedly revived at some stage when technology advanced. I find it hard to take these seriously, but they say that, well the chance may be small, but if they don’t invest this way then the chance is zero that they have a resurrection.

But I actually think that even if it worked, even if the company didn’t go bust, and sincerely maintained them for centuries and they could then be revived, I still think that what they’re doing is selfish, because they’d be revived into a world that was very different. They’d be refugees from the past, and they’d therefore be imposing an obligation on the future.

We obviously feel an obligation to look after some asylum seeker or refugee, and we might feel the same if someone had been driven out of their home in the Amazonian forest for instance, and had to find a new home, but these refugees from the past, as it were, they’re imposing a burden on future generations. I’m not sure that what they’re doing is ethical. I think it’s rather selfish.

Ariel: I hadn’t thought of that aspect of it. I’m a little bit skeptical of our ability to come back.

Martin: I agree. I think the chances are almost zero, even if they were stored and et cetera, one would like to see this technology tried on some animal first to see if they could freeze animals at liquid nitrogen temperatures and then revive it. I think it’s pretty crazy. Then of course, the number of people doing it is fairly small, and some of the companies doing it, there’s one in Russia, which are real ripoffs I think, and won’t survive. But as I say, even if these companies did keep going for a couple of centuries, or however long is necessary, then it’s not clear to me that it’s doing good. I also quoted this nice statement about, “What happens if we clone, and create a neanderthal? Do we put him in a zoo or send him to Harvard,” said the professor from Stanford.

Ariel: Those are ethical considerations that I don’t see very often. We’re so focused on what we can do that sometimes we forget. “Okay, once we’ve done this, what happens next?”

I appreciate you being here today. Those were my questions. Was there anything else that you wanted to mention that we didn’t get into?

Martin: One thing we didn’t discuss, which was a serious issue, is the limits of medical treatment, because you can make extraordinary efforts to keep people alive long before they’d have died naturally, and to keep alive babies that will never live a normal life, et cetera. Well, I certainly feel that that’s gone too far at both ends of life.

One should not devote so much effort to extreme premature babies, and allow people to die more naturally. Actually, if you asked me about predictions I’d make about the next 30 or 40 years, first more vegetarianism, secondly more euthanasia.

Ariel: I support both, vegetarianism, and I think euthanasia should be allowed. I think it’s a little bit barbaric that it’s not.

Martin: Yes.

I think we’ve covered quite a lot, haven’t we?

Ariel: I tried to.

Martin: I’d just like to mention that my book does touch a lot of bases in a fairly short book. I hope it will be read not just by scientists. It’s not really a science book, although it emphasizes how scientific ideas are what’s going to determine how our civilization evolves. I’d also like to say that for those in universities, we know it’s only interim for students, but we have universities like MIT, and my University of Cambridge, we have convening power to gather people together to address these questions.

I think the value of the centers which we have in Cambridge, and you have in MIT, are that they are groups which are trying to address these very, very big issues, these threats and opportunities. The stakes are so high that if our efforts can really reduce the risk of a disaster by one part in 10,000, we’ve more than earned our keep. I’m very supportive of our Centre for Existential Risk in Cambridge, and also the Future of Life Institute which you have at MIT.

Given the huge numbers of people who are thinking about small risks like which foods are carcinogenic, and the threats of low radiation doses, et cetera, it’s not at all inappropriate that there should be some groups who are focusing on the more extreme, albeit perhaps rather improbable threats which could affect the whole future of humanity. I think it’s very important that these groups should be encouraged and fostered, and I’m privileged to be part of them.

Ariel: All right. Again, the book is On the Future: Prospects for Humanity by Martin Rees. I do want to add, I agree with what you just said. I think this is a really nice introduction to a lot of the risks that we face. I started taking notes about the different topics that you covered, and I don’t think I got all of them, but there’s climate change, nuclear war, nuclear winter, biodiversity loss, overpopulation, synthetic biology, genome editing, bioterrorism, biological errors, artificial intelligence, cyber technology, cryogenics, and the various topics in physics, and as you mentioned the role that scientists need to play in ensuring a safe future.

I highly recommend the book as a really great introduction to the potential risks, and the hopefully much greater potential benefits that science and technology can pose for the future. Martin, thank you again for joining me today.

Martin: Thank you, Ariel, for talking to me.

[end of recorded material]

What Can We Learn From Cape Town’s Water Crisis?

The following article was contributed by Billy Babis.

Earlier this year, Cape Town, a port city in South Africa, prepared for a full depletion of its water resources amidst the driest 3-year span on record. The threat of ”Day Zero” —  the day when the city would officially have cut off running water — has subsided for now, but the long-term threat remains. And though Cape Town’s crisis is local, it exemplifies a problem several regions across the globe may soon have to address.

Current situation in Cape Town

In addition to being part of Cape Town’s driest 3-year span on record, 2017 was the city’s driest single year since 1933. With a population that has nearly doubled to 3.74 million in the past 25 years, water consumption has increased as the supply dwindles. 

The video below (added on November 28, 2018) illustrates how one of Cape Town’s largest reservoirs, the Theewaterskloof Dam, has been affected by this three-year drought.

In January of this year, the city of Cape Town made an emergency announcement that Day Zero would land in mid-April and began enforcing restrictions and regulations. Starting on February 1st, the Cape Town government put emergency water regulations into effect, increasing the cost of water to 5-8 times its previous rate and placing a suggested 50 liter per person per day cap on water use. For context, the average American uses approximately 300-380 liters of water per day. And while Cape Town residents continue to use 80 million liters more than the city’s goal of 450 million liters per day, these regulations and increased costs have made progress. Water consumption decreased enough that Day Zero has now been postponed until 2019, as the rainy season (July-August) is expected to partially replenish the reservoirs.

Cape Town’s water consumption decreased largely due to its increased cost. The municipality also restricted agricultural use of water, which usually makes up just under half of total consumption. These restrictions are worsening Cape Town’s already struggling agricultural sector; which in this 3-year drought has slashed 37,000 jobs and lost R14 billion (US$1.17 billion), contributing to inflated food prices that shoved 50,000 people below the poverty line.

On the innovation side, the city has made major investments in infrastructure to increase water availability: 3 desalination plants, 3 aquifer abstraction facilities, and 1 waste-water recycling project are currently underway to ultimately increase Cape Town’s water availability by almost 300 million liters per day.

Did climate change cause the water crisis?

Severe droughts have plagued subtropical regions like Cape Town long before human-caused climate change. Thus, it’s difficult to conclude that climate change directly caused the Cape Town water crisis. However, the International Panel on Climate Change (IPCC) continues to find evidence suggesting that climate change has caused drought in certain regions and will cause longer, more frequent droughts over the next century.

Drought can either be meteorological (abnormally limited rainfall), agricultural (abnormally dry soil, excess evaporation), or hydrological (limited stream-water). While each of these problems are interrelated, they have varying impacts on drought in different regions. Meteorological drought is often the most important, and this is certainly the case in Cape Town.

Meteorological drought occurs naturally in Cape Town and the other few regions of the world with a “Mediterranean” climate: Central California, central Chile, northern Africa and southern Europe, southwestern Australia, and the greater Cape Town area have dry summers and variably rainy winters. Due to global weather oscillations like El Nino, the total rainfall in winter varies dramatically. A given winter is usually either very rainy or very dry. But as long as repeated and prolonged periods of drought don’t strike, these regions can prepare for dry seasons by storing water from previous wet seasons.

But climate change threatens to jeopardize this. With “robust evidence and high agreement,” the IPCC concluded that while tropical regions will receive more precipitation this century, subtropical dry regions (like these Mediterranean climates) will receive less. In fact, warm, rising air near the equator ultimately settles and cools in these subtropical regions, creating deserts and droughts. Therefore, increasing equatorial heat and rain (as global warming promises to do) will likely lead to drier subtropical conditions and more frequent meteorological drought.  

But the IPCC also expects these Mediterranean climates to experience more frequent agricultural drought, (IPCC 5) largely due to growing human populations. In addition, renewable surface water and groundwater will decrease and hydrologic drought will likely occur more frequently, due in large part to the increasing population and resulting consumption.

What we can learn from this crisis

Earlier this year, many Capetonians feared a total catastrophe: running out of water. Wealthier citizens might have been able to pay for imported water or outbound flights, but poorer communities would have been left in a much more dire situation. International aid likely would have been necessary to avoid any fatal consequences.

The city seems to have averted that for now, but not without cost. The drought has caused immense strain on the agricultural economy that “will take years to work out of the system,” explains Beatrice Conradie, Professor of Economics and Social Sciences at University of Cape Town. “Primary producers are likely to act more conservatively as a result and this will make them less inclined to invest and create jobs. The unemployed will migrate to cities where they will put additional pressure on already strained infrastructure.”

And while Cape Town’s water infrastructure projects — desalination plants, aquifer abstraction facilities, and waste-water recycling projects — provided some immediate and prospective relief, they will not always be an option for every region. Desalination plants are very expensive and energy intensive (thus, climate change contributors), and pollute the local ocean ecosystem by releasing the brine remnants of desalination back into the water. Conradie raises further concerns about unregulated well-drilling in response to surface water restrictions. Regulated and unregulated over-abstraction from aquifers commonly leads to salt-water intrusion, permanently contaminating that fresh water and killing wetland wildlife. These are the best solutions available, and none of them are sustainable.

“Cape Town is really a wake-up call for other cities around the world,” shares NASA’s senior water scientist, Jay Famiglietti. “We have huge challenges ahead of us if we want to avert future day zeros in other cities around the world.”

Just as Capetonians failed to heed the cries of their government before reaching crisis-mode, global citizens are adjusting very slowly to the climate change cries of scientists and governments around the globe. But Cape Town’s response offers some valuable sociological lessons on sustainability. One is that behavioral changes can swing abruptly on a mass scale. Once a sufficient sense of urgency struck the people of Cape Town in early February (see figure below), the conservation movement gained a critical mass. Community members exponentially fed off each others’ hope.

But the role of governance proved indispensable. While Cape Town had long tried to inform the public of the water shortages, residents didn’t adjust their consumption until the government made the emergency announcement on January 17th and began enforcing drastic regulations and fees.

As Cape Town’s sustainability efforts demonstrate, addressing climate change is a social problem as much as a technical problem. Regardless of technological innovations, understanding human behavioral habits will be crucial in propelling necessary changes. As such, sociologists will grow just as important as climate scientists or chemical engineers in leading change.

Cape Town’s main focus over the past few months has been discovering the best ways to make behavioral nudges to its citizens on a mass scale to reduce water consumption. This entailed research partnerships with University of Cape Town’s sociology departments and the Environmental Policy Research Unit (EPRU). The principle of reciprocity reigned true – that people are more likely to contribute to the public good if they see others doing it – and enhancing this effect on a global scale will grow increasingly important as we attempt to mitigate and adapt to environmental threats in this century.

With or without a changing climate, though, water scarcity will become an increasingly urgent issue for humanity’s growing population. Population growth continues to catapult our ecological footprint and increasingly threaten the ability of future, presumably larger, generations to flourish. Amidst their environmental challenge, the people of Cape Town demonstrated the importance of effective governance and collaboration. As more subtropical regions begin to suffer from drought and water shortages, learning from the failures and successes of Cape Town’s 2018 crisis will help avoid disaster.

Can Global Warming Stay Below 1.5 Degrees? Views Differ Among Climate Scientists

The Paris Climate Agreement seeks to keep global warming well below 2 degrees Celsius relative to pre-industrial temperatures. In the best case scenario, warming would go no further than 1.5 degrees.

Many scientists see this as an impossible goal. A recent study by Peter Cox et al. postulates that, given a twofold increase in atmospheric carbon dioxide, there is only a 3% chance of keeping warming below 1.5 degrees.

But a study by Richard Miller et al. provides more reason for hope. The Miller report concludes that the 1.5 degree limit is still physically feasible, if only narrowly. It also provides an updated “carbon budget”—a projection of how much more carbon dioxide we can emit without breaking the 1.5 degree limit.

Dr. Joeri Rogelj, a climate scientist and research scholar with the Energy Program of the International Institute for Applied Systems Analysis, co-authored the Miller report. For Rogelj, the updated carbon budget is not the paper’s most important point. “Our paper shows to decision makers the importance of anticipating new and updated scientific knowledge,” he says.

Projected “carbon budgets” are rough estimates based on limited observations. These projections need to be continually updated as more data becomes available. Fortunately, the Paris Agreement calls for countries to periodically update their emission reduction pledges based on new estimates. Rogelj is hopeful “that this paper has put the necessity for a strong [updating] process on the radar of delegates.”

For scientists who have dismissed the 1.5 degree limit as impossible, the updating process might seem pointless. But Rogelj stresses that his team looked only at geophysical limitations, not political ones. Their report assumes that countries will agree to a zero emissions commitment—a much more ambitious scenario than other researchers have considered.

There is a misconception, Rogelj says, that the report claims to have found an inaccuracy in the Earth system models (ESMs) that are used to estimate human-driven warming. “We are using precisely those models to estimate the carbon budget from today onward,” Rogelj explains.

The problem is not the models, but rather the data fed into them. These simulations are often run using inexact projections of CO2 emissions. Over time, small discrepancies accumulate and are reflected in the warming predictions that the models make.

Given information about current CO2 emissions, however, ESMs make temperature predictions that are “quite accurate.” And when they are provided with an ambitious future scenario for emissions reduction, the models indicate that it is possible for global temperature increases to remain below 1.5 degrees.

So what would such a scenario look like? First off, emissions have to fall to zero. At the same time, the carbon budget needs to be continually reevaluated, and strategy changes must be based on the updated budget. For example, if emissions fall to zero but we’ve surpassed our carbon budget, then we’ll need to focus on making our emissions negative—in other words, on carbon dioxide removal.

Rogelj names two major processes for carbon dioxide removal: reforestation and bio-energy with carbon capture and storage. Some negative emissions processes, such as reforestation, provide benefits beyond carbon capture, while others may have undesired side effects.

But Rogelj is quick to add that these negative emissions technologies are not “silver bullets.” It’s too soon to know if carbon dioxide removal at a global scale will actually be necessary—we’ll have to get to zero emissions before we can tell. But such technologies could also help us reach zero in the first place.

What else will get us to zero emissions? According to Rogelj, we need “a strong emphasis on energy efficiency, combined with an electrification of end-use sectors like transport and building and a shift away from fossil fuels.” This will require a major shift in investment patterns. We want to avoid “locking into carbon dioxide-intensive infrastructure” that would saddle future generations with a dependency on non-renewable energy, he explains.

Rogelj stresses that his team’s findings are based only on geophysical data. Societal factors are a different matter: It is up to individual countries to decide where reducing emissions falls on their list of priorities.

However, the stipulation in the Paris Climate Agreement that countries periodically update their pledges is a source of optimism. Rogelj, for his part, is cautiously hopeful: “Looking at real world dynamics in terms of costs of renewables and energy storage, I personally think there is room for pledges to be strengthened over the coming five to ten years as countries better understand what is possible and how these pledges can align with other priorities.”

But not everyone in the scientific community shares the hopeful tone struck by Rogelj and his team. An article by the MIT Technology Review outlines “the five most worrisome climate developments” from 2017.

To start, global emissions are on the rise, up 2% from 2016. While the prior few years had seen a relative flattening in emissions, this more recent data shattered hopes that the trend would continue. On top of that, scientists are finding that observable climate trends line up best with “worst-case scenario” models of global warming—that is, global temperatures could rise five degrees in the next century.

And the arctic is melting much faster than scientists predicted. A recent report by the U.S. National Oceanic and Atmospheric Administration (NOAA) declared “that the North Pole had reached a ‘new normal,’ with no sign of returning to a ‘reliably frozen region.’”

Melting glaciers and sea ice trigger a whole new set of problems. The disappearing ice will cause sea levels to rise, and the “reflective white snow and ice [will] turn into heat-absorbing dark-blue water…[meaning] the Arctic will send less heat back into space, which leads to more warming, more melting, and more sea-level rise still.”

And finally, natural disasters are becoming increasingly ferocious as weather patterns mutate. The United States saw this first-hand, with massive wildfires on the west coast—including the largest ever in California’s history—and a string of hurricanes that ravaged the Virgin Islands, Puerto Rico, and many southern states.

These consequences of global warming are beginning to affect areas of social interest beyond the environment. The 2017 Atlantic hurricane season, for example, has been a massive economic burden, wracking up more than $200 billion in damages.

In Rogelj’s words, “Right now we really need to find ways to achieve multiple societal objectives, to find policies and measures and options that allow us to achieve those together.” As governments come to see how climate protection “can align with other priorities like reducing air pollution, and providing clean water and reliable energy,” we have reason to hope that it may become a higher and higher priority.

As Acidification Increases, Ocean Biodiversity May Decline

Dubbed “the evil twin of global warming,” ocean acidification is a growing crisis that poses a threat to both water-dwelling species and human communities that rely on the ocean for food and livelihood.

Since pre-industrial times, the ocean’s pH has dropped from 8.2 to 8.1—a change that may seem insignificant, but actually represents a 30 percent increase in acidity. As the threat continues to mount, the German research project  BIOACID (Biological Impacts of Ocean Acidification) seeks to provide a better understanding of the phenomenon by studying its effects around the world.

BIOACID began in 2009, and since that time, over 250 German researchers  have contributed more than 580 publications to the scientific discourse on the effects of acidification and how the  oceans are changing.

The organization recently released a report that synthesizes their most notable findings for climate negotiators and decision makers. Their work explores “how different marine species respond to ocean acidification, how these reactions impact the food web as well as material cycles and energy turnover in the ocean, and what consequences these changes have for economy and society.”

Field research for the project has spanned multiple oceans, where key species and communities have been studied under natural conditions. In the laboratory, researchers have also been able to test for coming changes by exposing organisms to simulated future conditions.

Their results indicate that acidification is only one part of a larger problem. While organisms might be capable of adapting to the shift in pH, acidification is typically accompanied by other environmental stressors that make adaptation all the more difficult.

In some cases, marine life that had been able to withstand acidification by itself could not tolerate the additional stress of increased water temperatures, researchers found. Other factors like pollution and eutrophication—an excess of nutrients—compounded the harm.

Further, rising water temperatures are forcing many species to abandon part or all of their original habitats, wreaking additional havoc on ecosystems. And a 1.2 degree increase in global temperature—which is significantly under the 2 degree limit set in the Paris Climate Agreements—is expected to kill at least half of the world’s tropical coral reefs.

Acidification itself is a multipronged threat. When carbon dioxide is absorbed by the ocean, a series of chemical reactions take place. These reactions have two important outcomes: acid levels increase and the compound carbonate is transformed into bicarbonate. Both of these results have widespread effects on the organisms who make their homes in our oceans.

Increased acidity has a particularly harmful effect on organisms in their early life stages, such as fish larvae. This means, among other things, the depletion of fish stocks—a cornerstone of the economy as well as diet in many human communities. Researchers “have found that both [acidification and warming] work synergistically, especially on the most sensitive early life stages of [fish] as well as embryo and larval survival.”

Many species are harmed as well by the falling levels of carbonate, which is an essential building block for organisms like coral, mussels, and some plankton. Like all calcifying corals, the cold-water coral species Lophelia pertusa builds its skeleton from calcium carbonate. Some research suggests that acidification threatens both to slow its growth and to corrode the dead branches that are no longer protected by organic matter.

As a “reef engineer,” Lophelia is home to countless species; as it suffers, so will they. The BIOACID report warns: “[T]o definitely preserve the magnificent oases of biodiversity founded by Lophelia pertusa, effects of climate change need to be minimised even now–while science continues to investigate this complex marine ecosystem.”

Even those organisms not directly affected by acidification may find themselves in trouble as their ecosystems are thrown out of balance. Small changes at the bottom of the food web, for example, may have big effects at higher trophic levels. In the Artic, Limacina helicina—a tiny swimming snail or “sea butterfly—is a major source of food for many marine animals. The polar cod species Boreogadus saida, which feeds on Limacina, is a key food source for larger fish, birds, and mammals such as whales and seals.

As acidification increases, research suggests that Limacina’s nutrional value will decrease as its metabolism and shell growth are affected; its numbers, too, will likely drop. With the disappearance of this prey, the polar cod will likely suffer. Diminishing cod populations will in turn affect the many predators who feed on them.

Even where acidification stands to benefit a particular species, the overall impact on the ecosystem can be negative. In the Baltic Sea, BIOACID scientists have found that Nodularia spumigena, a species of cyanobacteria, “manages perfectly with water temperatures above 16 degrees Celsius and elevated carbon dioxide concentrations–whereas other organisms already reach their limits at less warming.”

Nodularia becomes more productive under acidified conditions, producing bacterial “blooms” that can extend upwards of 60,000 square kilometers in the Baltic Sea. These blooms block light from other organisms, and as dead bacteria degrade near the ocean floor they take up precious oxygen. The cells also release toxins that are harmful to marine animals and humans alike.

Ultimately biodiversity, “a basic requirement for ecosystem functioning and ultimately even human wellbeing,” will be lost. Damage to tropical coral reefs, which are home to one quarter of all marine species, could drastically reduce the ocean’s biodiversity. And as biodiversity decreases, an ecosystem becomes more fragile: ecological functions that were once performed by several different species become entirely dependent on only one.

And the diversity of marine ecosystems is not the only thing at stake. Currently, the ocean plays a major mitigating role in global warming, absorbing around 30 percent of the carbon dioxide emitted by humans. It also absorbs over 90 percent of the heat produced by the greenhouse effect. But as acidification continues, the ocean will take up less and less carbon dioxide—meaning we may see an increase in the rate of global warming.

The ocean controls carbon dioxide uptake in part through a biological mechanism known as the carbon pump. Normally, phytoplankton near the ocean’s surface take up carbon dioxide and then sink towards the ocean floor. This process lowers surface carbon dioxide concentrations, facilitating its uptake from the atmosphere.

But acidification weakens this biological carbon pump. Researchers have found that acidified conditions favor smaller types of phytoplankton, which sink more slowly. In addition, heavier calcifying plankton—which typically propel the pump by sinking more quickly—will have increasing difficulty forming their weighty calcium carbonate shells. As the pump’s efficiency decreases, so will the uptake of carbon dioxide from the air.

The BIOACID report stresses that the risks of acidification remain largely uncertain. However, despite — or perhaps because of — this, society must tread cautiously with care of the oceans. The report explains, “Following the precautionary principle is the best way to act when considering potential risks to the environment and humankind, including future generations.”

As CO2 Levels Rise, Scientists Question Best- and Worst-Case Scenarios of Climate Change

Scientists know that the planet is warming, that humans are causing it, and that we’re running out of time to avoid catastrophic climate change. But at the same time, their estimates for future global warming can seem frustratingly vague — best-case scenarios allow decades to solve the energy crisis, while worst-case scenarios seem utterly hopeless, predicting an uninhabitable planet no matter what we do.

At the University of Exeter, some researchers disagree with these vague boundaries. Professors Peter Cox, Chris Huntingford, and Mark Williamson co-authored a recent report in Nature that argues for a more constrained understanding of the climate’s sensitivity to carbon dioxide. In general, they found that both the worst-case and best-case scenarios for global warming are far more unlikely than previously thought.

Their research focuses on a measure known as equilibrium climate sensitivity (ECS) — defined as “the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2.”

This concept simplifies Earth’s actual climate — CO2 won’t double instantly and it often takes decades or centuries for the climate to return to equilibrium — but ECS is critical for gauging the planet’s response to fossil fuel emissions. It can help predict how much warming will come from increases in atmospheric CO2, even before the climate settles into equilibrium.

 

How hot will it get if atmospheric CO2 doubles?

In other words, what is Earth’s ECS? The Intergovernmental Panel on Climate Change (IPCC) predicts that ECS is between 1.5-4.5 °C, with a 25% chance that it exceeds 4 °C and a 16% chance that it’s lower than 1.5 °C.

Cox and his colleagues argue that this range is too generous. Using tighter constraints based on historical observations of warming, they conclude that doubling atmospheric CO2 would push temperatures between 2.2–3.4 °C higher, with a 2% chance that ECS exceeds 4 °C and a 3% chance that ECS is lower than 1.5 °C. The extremes (both good and bad) of global warming thus appear less likely.

Although some scientists applauded these findings, others are more skeptical. Kevin Trenberth, a Senior Scientist in the Climate Analysis Section at the National Center for Atmospheric Research (NCAR), says the study’s climate models don’t adequately account for natural variability, making it difficult to give the findings much weight.

“I do think some previous estimates are overblown and they do not adequately use the observations we have as constraints,” he explains. “This study picks up on that a bit, and in that sense the new results seem reasonable and could be important for ruling out really major extreme changes. But it is much more important to improve the models and make better projections into the future.”

 

But When Will Atmospheric CO2 Double?

CO2 levels may not have doubled from pre-industrial levels yet, but they’re increasing at an alarming rate.

In 1958, NOAA’s Mauna Loa observatory opened in Hawaii to monitor atmospheric change. Its first reading of atmospheric CO2 levels clocked in at 280 parts per million (ppm). In 2013, CO2 levels surpassed 400 ppm for the first time, and just four years later, the Mauna Loa Observatory recorded its first-ever carbon dioxide reading above 410 ppm.

The last time CO2 levels were this high, global surface temperatures were 6 °C higher, oceans were 100 feet higher, and modern humans didn’t exist. Unless the international community makes massive strides towards the Paris Agreement goals, atmospheric CO2 could rise to 560 ppm by 2050 — double the concentration in 1958, and a sign of much more global warming to come.

Annual CO2 Emissions from Fossil Fuels by Country, 1959-2017 / Source: Carbon Brief

 

 

 

 

 

 

 

 

 

 

 

 

 

Avoiding the worst, while ensuring the bad

On the one hand, Cox’s findings come as a sigh of relief, as they reduce uncertainty about ECS and renew hope of avoiding catastrophic global warming.

But these results also imply that there’s very little hope of achieving the best-case scenarios predicted by the Paris Agreement, which seeks to keep temperatures at or below a 1.5 °C increase. Since atmospheric CO2 levels could plausibly double by midcentury, Cox’s results indicate that not only will temperatures soar past 1.5 °C, but that they’ll quickly rise higher than Paris’ upper limit of 2 degrees.

Even 2 °C of warming would be devastating for the planet, leading to an ice-free Arctic and over a meter of sea level rise — enough to submerge the Marshall Islands — while leaving tropical regions deathly hot for outdoor workers and metropolises Karachi and Kolkata nearly uninhabitable. Deadly heat waves would plague North Africa, Central America, Southeast Asia, and the Southeast US, while decreasing the yields of wheat, rice and corn by over 20%. Food shortages and extreme weather could trigger the migration of tens of millions of people and leave regions of the world ungovernable.

This two-degree world might not be far off. Global temperatures have already risen 0.8 degrees celsius since pre-industrial levels, and the past few years have provided grave indications that things are heating up.

In January, NASA announced that 2017 was the second-hottest year on record (behind 2016 and ahead of 2015) while NOAA recorded it as their third-hottest year on record. Despite this minor discrepancy, both agencies agree that the 2017 data make the past four years the hottest period in their 138-year archives.

Global warming continues, and since the climate responds to rising CO2 levels on a delay of decades, there is more warming “in the pipeline,” no matter how quickly we cut fossil fuel emissions. But understanding ECS and continuing to improve climate models, as Dr. Trenberth suggests, can provide a clearer picture of what’s ahead and give us a better idea of the actions we need to take.

Rewinding the Doomsday Clock

On Thursday, the Bulletin of Atomic Scientists inched their iconic Doomsday Clock forward another thirty seconds. It is now two minutes to midnight.

Citing the growing threats of climate change, increasing tensions between nuclear-armed countries, and a general loss of trust in government institutions, the Bulletin warned that we are “making the world security situation more dangerous than it was a year ago—and as dangerous as it has been since World War II.”

The Doomsday Clock hasn’t fallen this close to midnight since 1953, a year after the US and Russia tested the hydrogen bomb, a bomb up to 1000 times more powerful than the bombs dropped on Hiroshima and Nagasaki. And like 1953, this year’s announcement highlighted the increased global tensions around nuclear weapons.

As the Bulletin wrote in their statement, “To call the world nuclear situation dire is to understate the danger—and its immediacy.”

Between the US, Russia, North Korea, and Iran, the threats of aggravated nuclear war and accidental nuclear war both grew in 2017. As former Secretary of Defense William Perry said in a statement, “The events of the past year have only increased my concern that the danger of a nuclear catastrophe is increasingly real. We are failing to learn from the lessons of history as we find ourselves blundering headfirst towards a second cold war.”

The threat of nuclear war has hovered in the background since the weapons were invented, but with the end of the Cold War, many were pulled into what now appears to have been a false sense of security. In the last year, aggressive language and plans for new and upgraded nuclear weapons have reignited fears of nuclear armageddon. The recent false missile alerts in Hawaii and Japan were perhaps the starkest reminders of how close nuclear war feels, and how destructive it would be. 

 

But the nuclear threat isn’t all the Bulletin looks at. 2017 also saw the growing risk of climate change, a breakdown of trust in government institutions, and the emergence of new technological threats.

Climate change won’t hit humanity as immediately as nuclear war, but with each year that the international community fails to drastically reduce carbon fossil fuel emissions, the threat of catastrophic climate change grows. In 2017, the US pulled out of the Paris Climate Agreement and global carbon emissions grew 2% after a two-year plateau. Meanwhile, NASA and NOAA confirmed that the past four years are the hottest four years they’ve ever recorded.

For emerging technological risks, such as widespread cyber attacks, the development of autonomous weaponry, and potential misuse of synthetic biology, the Bulletin calls for the international community to work together. They write, “world leaders also need to seek better collective methods of managing those advances, so the positive aspects of new technologies are encouraged and malign uses discovered and countered.”

Pointing to disinformation campaigns and “fake news”, the Bulletin’s Science and Security Board writes that they are “deeply concerned about the loss of public trust in political institutions, in the media, in science, and in facts themselves—a loss that the abuse of information technology has fostered.”

 

Turning Back the Clock

The Doomsday Clock is a poignant symbol of the threats facing human civilization, and it received broad media attention this week through British outlets like The Guardian and The Independent, Australian outlets such as ABC Online, and American outlets from Fox News to The New York Times.

“[The clock] is a tool,” explains Lawrence Krauss, a theoretical physicist at Arizona State University and member of the Bulletin’s Science and Security Board. “For one day a year, there are thousands of newspaper stories about the deep, existential threats that humanity faces.”

The Bulletin ends its report with a list of priorities to help turn back the Clock, chocked full of suggestions for government and industrial leaders. But the authors also insist that individual citizens have a crucial role in tackling humanity’s greatest risks.

“Leaders react when citizens insist they do so,” the authors explain. “Citizens around the world can use the power of the internet to improve the long-term prospects of their children and grandchildren. They can insist on facts, and discount nonsense. They can demand action to reduce the existential threat of nuclear war and unchecked climate change. They can seize the opportunity to make a safer and saner world.”

You can read the Bulletin’s full report here.

Harvesting Water Out of Thin Air: A Solution to Water Shortage Crisis?

The following post was written by Jung Hyun Claire Park.

One in nine people around the world do not have access to clean water.  As the global population increases and climate heats up, experts fear water shortages will increase. To address this anticipated crisis, scientists are turning to a natural reserve of fresh water that has yet to be exploited: the atmosphere.

The atmosphere is estimated to contain 13 trillion liters of water vapor and droplets, which could significantly contribute to resolving the water shortage problem. However, a number of attempts have already been made to collect water from air. Previously, researchers have used porous materials such as zeolites, silica gel, and clay to capture water molecules, but these approaches suffered from several limitations. First, the aforementioned materials work efficiently only in high-humidity condition. Yet it’s low-humidity areas, like sub-Saharan Africa, which are in greatest need of clean drinking water. Another limitation is that these materials tend to cling too tightly to the water molecules they collect. Thus, these previous methods of collecting water from air have required high energy consumption to release the absorbed water, diminishing their viability as a solution to the water shortage crisis.

Now, Dr. Omar Yaghi and a team of scientists at Massachusetts Institute of Technology and the University of California Berkeley have developed a new technology that provides a solution to these limitations. The technology uses a material called a metal-organic framework (MOF) that effectively captures water molecules at low-humidity levels. And the only energy necessary to release drinkable water from the MOFs can be harnessed from ambient sunlight.

How Does This System Work?

MOFs belong to a family of porous compounds whose sponge-like configuration is ideal for trapping molecules. The MOFs can be easily modified at the molecular level to meet various needs, and they are highly customizable. Researchers can modify the type of molecule that’s absorbed, the optimal humidity level for maximum absorption, and the energy required to release trapped molecules — thus yielding a plethora of potential MOF variations. The proposed water harvesting technology uses a hydrophilic variation of MOFs called microcrystalline powder MOF-801. This variation is engineered to more efficiently harvest water from an atmosphere in which the relative humidity level as low as 20% — the typical level found in the world’s driest regions. Furthermore, the MOF-801 only requires energy from ambient sunlight to relinquish its collected water, which means the energy necessary for this technology is abundant in precisely those desert areas with the most severely limited supply of fresh water.  MOF-801 overcomes most, if not all, of the limitations found in the materials that were previously proposed for harvesting water from air.

A Schematic of a metal-organic framework (MOF). The yellow balls represent the porous space where molecules are captured. The lines are organic linkers, and the blue intersections are metal ions. UC Berkeley, Berkeley Lab image

The prototype is shaped like a rectangular prism and it operates through a simple mechanism. To collect water from the atmosphere, MOF is pressed into a thin sheet of copper metal and placed under the solar absorber located on top of the prism. The condenser plate is placed at the bottom and is kept at room temperature. Once the top layer absorbs solar heat, water is released from the MOF and collected in the cooler bottom layer due to concentration and temperature difference. Tests showed that one kilogram (about 2 pounds) of MOF can collect about 2.8L of water per day. Yaghi notes that since the technology collects distilled water, all that’s needed is the addition of mineral ions. He suggests that one kilogram of MOF will be able to produce enough drinkable water per day for a person living in some of the driest regions on earth.

Image of a water harvesting prototype with MOF-801 with outer dimension of 7cm by 7cm x 4.5cm. MIT.

Why This Technology Is Promising

The promise of this technology mostly lies in its sustainability. Water can be pulled from the air without any energy input beyond that which can be collected from the ambient sunlight. In addition, MOF-801 is a zirconium-based compound that is widely available for a low cost. And the technology has a long-life span: Yaghi predicts that the MOF will last through at least 100,000 cycles of water absorption and desorption, and thus it does not require frequent replacement. Plus, the water harvesting technology employing MOF isn’t limited to drinking water. It could be used for any service requiring water, such as agriculture. Yaghi believes that this water harvesting technology could pose a viable solution for water shortage problems in various regions of the world.

Yaghi also anticipates that the material itself could be used for the separation, storage, and catalysis of molecules other than water as well. For instance, MOF can be tailored to capture carbon emissions before those emissions reach the atmosphere. Or they may be designed to remove existing CO2 from the atmosphere. MOF, as the name suggests, is simply a framework, and thus it has opened up many opportunities for modification to suit practical needs.

Future of Water Harvesting Technology

The team of researchers from Berkeley and MIT are currently pushing to test the water harvesting technology in real-life settings in regions with low humidity levels. Yaghi remarked that his ultimate goal would be to “have drinking water widely available, especially in areas that lack clean water.” He envisions providing water to villages that are “off-grid,” where each household will have a machine and create their own “personalized water.” And he hopes his envisioned future may not be too far away.

15,000 Scientists Sign “Second Notice” Warning About Climate Change

In 1992, the Union of Concerned Scientists and the majority of Nobel laureates in the sciences penned the “World Scientists’ Warning to Humanity.” Pointing to growing problems like ocean dead zones, biodiversity destruction, climate change, and continued human population growth, the scientists argued that “a great change in our stewardship of the Earth and the life on it is required, if vast human misery is to be avoided.”

Now, 25 years after this initial dire warning, over 15,000 scientists from 184 countries have signed a much more urgent letter to humanity.

Led by William Ripple, an ecologist at Oregon State University, the “second notice” to humanity warns that we are on a collision course with the natural world, and that “soon it will be too late to shift course away from our failing trajectory.”

“Since 1992, with the exception of stabilizing the stratospheric ozone layer, humanity has failed to make sufficient progress in generally solving these foreseen environmental challenges, and alarmingly, most of them are getting far worse,” the scientists write.

In particular, the authors fear that rising greenhouse gas emissions from fossil fuel use, deforestation, and agricultural production significantly raise the risk of catastrophic climate change. As the growing population continues to stress ecosystems, more communities will face water shortages, failed harvests, and growing unrest.

The authors write: “By failing to adequately limit population growth, reassess the role of an economy rooted in growth, reduce greenhouse gases, incentivize renewable energy, protect habitat, restore ecosystems, curb pollution, halt defaunation, and constrain invasive alien species, humanity is not taking the urgent steps needed to safeguard our imperiled biosphere.”

Globally, freshwater resources continue to be depleted, ocean dead zones continue to expand, and the amount of species and forestry continue to plummet at unprecedented rates. Our growing population, land use, and fossil fuel use are threatening the very foundations for life on Earth.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image: Ripple et al, Bioscience 2017

 

Is There Hope?

Twenty-five years ago, scientists feared that our rapid population growth and economic growth were stressing Earth’s ecosystems “beyond their capacities to support the web of life,” and that we were “fast approaching many of the limits of what the biosphere can tolerate without substantial and irreversible harm.”

But despite these dire warnings, scientists aren’t without hope. They point to ozone depletion as an example of reversing humanity’s impact on the environment, and they also note that extreme poverty and hunger have diminished globally, while investments in girls’ and women’s education have contributed to more stable fertility rates.

The authors also note that the renewable energy sector has rapidly grown since 1992, and that some regions have successfully limited deforestation.

But these measures alone aren’t enough. As such, Ripple and his coauthors present 13 different strategies for moving towards sustainability, including: establishing well-funded nature reserves, reducing food waste through education and infrastructure, promoting dietary shifts towards plant-based foods, developing green technologies, and establishing economic incentives to shift patterns of consumption.

Few of these changes can happen without popular support, however, and the authors argue that scientists, media influencers and regular citizens must take action “as a moral imperative to current and future generations of human and other life.”

“Scientists are in the business of analyzing data and looking at the long-term consequences,” Ripple said in a release. “Those who signed this second warning aren’t just raising a false alarm. They are acknowledging the obvious signs that we are heading down an unsustainable path. We are hoping that our paper will ignite a widespread public debate about the global environment and climate.”

In the letter’s conclusion, Ripple writes: “We must recognize, in our day-to-day lives and in our governing institutions, that Earth with all its life is our only home. … Working together while respecting the diversity of people and opinions and the need for social justice around the world, we can make great progress for the sake of humanity and the planet on which we depend.”

If you’re a scientist reading this, you can sign the “second notice” here, and join The Alliance of World Scientists (AWS), a new international assembly of scientists founded by William Ripple, which is independent of both governmental and non-governmental organizations and corporations. 

Podcast: Choosing a Career to Tackle the World’s Biggest Problems with Rob Wiblin and Brenton Mayer

If you want to improve the world as much as possible, what should you do with your career? Should you become a doctor, an engineer or a politician? Should you try to end global poverty, climate change, or international conflict? These are the questions that the research group, 80,000 Hours, tries to answer.

To learn more, I spoke with Rob Wiblin and Brenton Mayer of 80,000 Hours. The following are highlights of the interview, but you can listen to the full podcast above or read the transcript here.

Can you give us some background about 80,000 Hours?

Rob: 80,000 Hours has been around for about six years and started when Benjamin Todd and Will MacAskill wanted to figure out how they could do as much good as possible. They started looking into things like the odds of becoming an MP in the UK or if you became a doctor, how many lives would you save. Pretty quickly, they were learning things that no one else had investigated.

They decided to start 80,000 Hours, which would conduct this research in a more systematic way and share it with people who wanted to do more good with their career.

80,000 hours is roughly the number of hours that you’d work in a full-time professional career. That’s a lot of time, so it pays off to spend quite a while thinking about what you’re going to do with that time.

On the other hand, 80,000 hours is not that long relative to the scale of the problems that the world faces. You can’t tackle everything. You’ve only got one career, so you should be judicious about what problems you try to solve and how you go about solving them.

How do you help people have more of an impact with their careers?

Brenton: The main thing is a career guide. We’ll talk about how to have satisfying careers, how to work on one of the world’s most important problems, how to set yourself up early so that later on you can have a really large impact.

The second part that we do is do career coaching and try to apply advice to individuals.

What is earning to give?

Rob: Earning to give is the career approach where you try to make a lot of money and give it to organizations that can use it to have a really large positive impact. I know people who can make millions of dollars a year doing the thing they love and donate most of that to effective nonprofits, supporting 5, 10, 15, possibly even 20 people to do direct work in their place.

Can you talk about research you’ve been doing regarding the world’s most pressing problems?

Rob: One of the first things we realized is that if you’re trying to help people alive today, your money can go further in the developing world. We just need to scale up solutions to basic health problems and economic issues that have been resolved elsewhere.

Moving beyond that, what other groups in the world are extremely neglected? Factory farmed animals really stand out. There’s very little funding focused on improving farm animal welfare.

The next big idea was, of all the people that we could help, what fraction are alive today? We think that it’s only a small fraction. There’s every reason to think humanity could live for another 100 generations on Earth and possibly even have our descendants alive on other planets.

We worry a lot about existential risks and ways that civilization can go off track and never recover. Thinking about the long-term future of humanity is where a lot of our attention goes and where I think people can have the largest impact with their career.

Regarding artificial intelligence safety, nuclear weapons, biotechnology and climate change, can you consider different ways that people could pursue either careers or “earn to give” options for these fields?

Rob: One would be to specialize in machine learning or other technical work and use those skills to figure out how can we make artificial intelligence aligned with human interests. How do we make the AI do what we want and not things that we don’t intend?

Then there’s the policy and strategy side, trying to answer questions like how do we prevent an AI arms race? Do we want artificial intelligence running military robots? Do we want the government to be more involved in regulating artificial intelligence or less involved? You can also approach this if you have a good understanding of politics, policy, and economics. You can potentially work in government, military or think tanks.

Things like communications, marketing, organization, project management, and fundraising operations — those kinds of things can be quite hard to find skilled, reliable people for. And it can be surprisingly hard to find people who can handle media or do art and design. If you have those skills, you should seriously consider applying to whatever organizations you admire.

[For nuclear weapons] I’m interested in anything that can promote peace between the United States and Russia and China. A war between those groups or an accidental nuclear incident seems like the most likely thing to throw us back to the stone age or even pre-stone age.

I would focus on ensuring that they don’t get false alarms; trying to increase trust between the countries in general and the communication lines so that if there are false alarms, they can quickly diffuse the situation.

The best opportunities [in biotech] are in early surveillance of new diseases. If there’s a new disease coming out, a new flu for example, it takes  a long time to figure out what’s happened.

And when it comes to controlling new diseases, time is really of the essence. If you can pick it up within a few days or weeks, then you have a reasonable shot at quarantining the people and following up with everyone that they’ve met and containing it. Any technologies that we can invent or any policies that will allow us to identify new diseases before they’ve spread to too many people is going to help with both natural pandemics, and also any kind of synthetic biology risks, or accidental releases of diseases from biological researchers.

Brenton: A Wagner and Weitzman paper suggests that there’s about a 10% chance of warming larger than 4.8 degrees Celsius, or a 3% chance of more than 6 degrees Celsius. These are really disastrous outcomes. If you’re interested in climate change, we’re pretty excited about you working on these very bad scenarios. Sensible things to do would be improving our ability to forecast; thinking about the positive feedback loops that might be inherent in Earth’s climate; thinking about how to enhance international cooperation.

Rob: It does seem like solar power and storage of energy from solar power is going to have the biggest impact on emissions over at least the next 50 years. Anything that can speed up that transition makes a pretty big contribution.

Rob, can you explain your interest in long-term multigenerational indirect effects and what that means?

Rob: If you’re trying to help people and animals thousands of years in the future, you have to help them through a causal chain that involves changing the behavior of someone today and then that’ll help the next generation and so on.

One way to improve the long-term future of humanity is to do very broad things that improve human capabilities like reducing poverty, improving people’s health, making schools better.

But in a world where the more science and technology we develop, the more power we have to destroy civilization, it becomes less clear that broadly improving human capabilities is a great way to make the future go better. If you improve science and technology, you both improve our ability to solve problems and create new problems.

I think about what technologies can we invent that disproportionately make the world safer rather than more risky. It’s great to improve the technology to discover new diseases quickly and to produce vaccines for them quickly, but I’m less excited about generically pushing forward the life sciences because there’s a lot of potential downsides there as well.

Another way that we can robustly prepare humanity to deal with the long-term future is to have better foresight about the problems that we’re going to face. That’s a very concrete thing you can do that puts humanity in a better position to tackle problems in the future — just being able to anticipate those problems well ahead of time so that we can dedicate resources to averting those problems.

To learn more, visit 80000hours.org and subscribe to Rob’s new podcast.

The U.S. Worldwide Threat Assessment Includes Warnings of Cyber Attacks, Nuclear Weapons, Climate Change, etc.

Last Thursday – just one day before the WannaCry ransomware attack would shut down 16 hospitals in the UK and ultimately hit hundreds of thousands of organizations and individuals in over 150 countries – the Director of National Intelligence, Daniel Coats, released the Worldwide Threat Assessment of the US Intelligence Community.

Large-scale cyber attacks are among the first risks cited in the document, which warns that “cyber threats also pose an increasing risk to public health, safety, and prosperity as cyber technologies are integrated with critical infrastructure in key sectors.”

Perhaps the other most prescient, or at least well-timed, warning in the document relates to North Korea’s ambitions to create nuclear intercontinental ballistic missiles (ICBMs). Coats writes:

“Pyongyang is committed to developing a long-range, nuclear-armed missile that is capable of posing a direct threat to the United States; it has publicly displayed its road-mobile ICBMs on multiple occasions. We assess that North Korea has taken steps toward fielding an ICBM but has not flight-tested it.”

This past Sunday, North Korea performed a missile test launch, which many experts believe shows considerable progress toward the development of an ICBM. Though the report hints this may be less of an actual threat from North Korea and more for show. “We have long assessed that Pyongyang’s nuclear capabilities are intended for deterrence, international prestige, and coercive diplomacy,” says Coats in the report.

More Nuclear Threats

The Assessment also addresses the potential of nuclear threats from China and Pakistan. China “continues to modernize its nuclear missile force by adding more survivable road-mobile systems and enhancing its silo-based systems. This new generation of missiles is intended to ensure the viability of China’s strategic deterrent by providing a second-strike capability.” In addition, China is also working to develop “its first long-range, sea-based nuclear capability.”

Meanwhile, though Pakistan’s nuclear program doesn’t pose a direct threat to the U.S., advances in Pakistan’s nuclear capabilities could risk further destabilization along the India-Pakistan border.

The report warns: “Pakistan’s pursuit of tactical nuclear weapons potentially lowers the threshold for their use.” And of the ongoing conflicts between Pakistan and India, it says, “Increasing numbers of firefights along the Line of Control, including the use of artillery and mortars, might exacerbate the risk of unintended escalation between these nuclear-armed neighbors.”

This could be especially problematic because “early deployment during a crisis of smaller, more mobile nuclear weapons would increase the amount of time that systems would be outside the relative security of a storage site, increasing the risk that a coordinated attack by non-state actors might succeed in capturing a complete nuclear weapon.”

Even a small nuclear war between India and Pakistan could trigger a nuclear winter that could send the planet into a mini ice age and starve an estimated 1 billion people.

Artificial Intelligence

Nukes aren’t the only weapons the government is worried about. The report also expresses concern about the impact of artificial intelligence on weaponry: “Artificial Intelligence (Al) is advancing computational capabilities that benefit the economy, yet those advances also enable new military capabilities for our adversaries.”

Coats worries that AI could negatively impact other aspects of society, saying, “The implications of our adversaries’ abilities to use AI are potentially profound and broad. They include an increased vulnerability to cyber attack, difficulty in ascertaining attribution, facilitation of advances in foreign weapon and intelligence systems, the risk of accidents and related liability issues, and unemployment.”

Space Warfare

But threats of war are not expected to remain Earth-bound. The Assessment also addresses issues associated with space warfare, which could put satellites and military communication at risk.

For example, the report warns that “Russia and China perceive a need to offset any US military advantage derived from military, civil, or commercial space systems and are increasingly considering attacks against satellite systems as part of their future warfare doctrine.”

The report also adds that “the global threat of electronic warfare (EW) attacks against space systems will expand in the coming years in both number and types of weapons.” Coats expects that EW attacks will “focus on jamming capabilities against dedicated military satellite communications” and against GPS, among others.

Environmental Risks & Climate Change

Plenty of global threats do remain Earth-bound though, and not all are directly related to military concerns. The government also sees environmental issues and climate change as potential threats to national security.

The report states, “The trend toward a warming climate is forecast to continue in 2017. … This warming is projected to fuel more intense and frequent extreme weather events that will be distributed unequally in time and geography. Countries with large populations in coastal areas are particularly vulnerable to tropical weather events and storm surges, especially in Asia and Africa.”

In addition to rising temperatures, “global air pollution is worsening as more countries experience rapid industrialization, urbanization, forest burning, and agricultural waste incineration, according to the World Health Organization (WHO). An estimated 92 percent of the world’s population live in areas where WHO air quality standards are not met.”

According to the Assessment, biodiversity loss will also continue to pose an increasing threat to humanity. The report suggests global biodiversity “will likely continue to decline due to habitat loss, overexploitation, pollution, and invasive species, … disrupting ecosystems that support life, including humans.”

The Assessment goes on to raise concerns about the rate at which biodiversity loss is occurring. It says, “Since 1970, vertebrate populations have declined an estimated 60 percent … [and] populations in freshwater systems declined more than 80 percent. The rate of species loss worldwide is estimated at 100 to 1,000 times higher than the natural background extinction rate.”

Other Threats

The examples above are just a sampling of the risks highlighted in the Assessment. A great deal of the report covers threats of terrorism, issues with Russia, China and other regional conflicts, organized crime, economics, and even illegal fishing. Overall, the report is relatively accessible and provides a quick summary of the greatest known risks that could threaten not only the U.S., but also other countries in 2017. You can read the report in its entirety here.

Podcast: Climate Change with Brian Toon and Kevin Trenberth

Too often, the media focus their attention on climate-change deniers, and as a result, when scientists speak with the press, it’s almost always a discussion of whether climate change is real. Unfortunately, that can make it harder for those who recognize that climate change is a legitimate threat to fully understand the science and impacts of rising global temperatures.

I recently visited the National Center for Atmospheric Research in Boulder, CO and met with climate scientists Dr. Kevin Trenberth and CU Boulder’s Dr. Brian Toon to have a different discussion. I wanted better answers about what climate change is, what its effects could be, and how can we prepare for the future.

The discussion that follows has been edited for clarity and brevity, and I’ve added occasional comments for context. You can also listen to the podcast above or read the full transcript here for more in-depth insight into these issues.

Our discussion began with a review of the scientific evidence behind climate change.

Trenberth: “The main source of human-induced climate change is from increasing carbon dioxide and other greenhouse gases in the atmosphere. And we have plenty of evidence that we’re responsible for the over 40% increase in carbon dioxide concentrations in the atmosphere since pre-industrial times, and more than half of that has occurred since 1980.”

Toon: “I think the problem is that carbon dioxide is rising proportional to population on the Earth. If you just plot carbon dioxide in the last few decades versus global population, it tracks almost exactly. In coming decades, we’re increasing global population by a million people a week. That’s a new city in the world of a million people every week somewhere, and the amount of energy that’s already committed to supporting this increasing population is very large.”

The financial cost of climate change is also quite large.

Trenberth: “2012 was the warmest year on record in the United States. There was a very widespread drought that occurred, starting here in Colorado, in the West. The drought itself was estimated to cost about $75 billion. Superstorm Sandy is a different example, and the damages associated with that are, again, estimated to be about $75 billion. At the moment, the cost of climate and weather related disasters is something like $40 billion a year.”

We discussed possible solutions to climate change, but while solutions exist, it was easy to get distracted by just how large – and deadly — the problem truly is.

Toon: “Technologically, of course, there are lots of things we can do. Solar energy and wind energy are both approaching or passing the cost of fossil fuels, so they’re advantageous. [But] there’s other aspects of this like air pollution, for example, which comes from burning a lot of fossil fuels. It’s been estimated to kill seven million people a year around the Earth. Particularly in countries like China, it’s thought to be killing about a million people a year. Even in the United States, it’s causing probably 10,000 or more deaths a year.”

Unfortunately, Toon may be underestimating the number of US deaths resulting from air pollution. A 2013 study out of MIT found that air pollution causes roughly 200,000 early deaths in the US each year. And there’s still the general problem that carbon in the atmosphere (not the same as air pollution) really isn’t something that will go away anytime soon.

Toon: “Carbon dioxide has a very, very long lifetime. Early IPCC reports would often say carbon dioxide has a lifetime of 50 years. Some people interpreted that to mean it’ll go away in 50 years, but what it really meant was that it would go into equilibrium with the oceans in about 50 years. When you go somewhere in your car, about 20% of that carbon dioxide that is released to the atmosphere is still going to be there in thousands of years. The CO2 has lifetimes of thousands and thousands of years, maybe tens or hundreds of thousands of years. It’s not reversible.”

Trenberth: “Every springtime, the trees take up carbon dioxide and there’s a draw-down of carbon dioxide in the atmosphere, but then, in the fall, the leaves fall on the forest floor and the twigs and branches and so on, and they decay and they put carbon dioxide back into the atmosphere. People talk about growing more trees, which can certainly take carbon dioxide out of the atmosphere to some extent, but then what do you do with all the trees? That’s part of the issue. Maybe you can bury some of them somewhere, but it’s very difficult. It’s not a full solution to the problem.”

Toon: “The average American uses the equivalent of about five tons of carbon a year – that’s an elephant or two. That means every year you have to go out in your backyard and bury an elephant or two.”

We know that climate change is expected to impact farming and sea levels. And we know that the temperature changes and increasing ocean acidification could cause many species to go extinct. But for the most part, scientists aren’t worried that climate change alone could cause the extinction of humanity. However, as a threat multiplier – that is, something that triggers other problems – climate change could lead to terrible famines, pandemics, and war. And some of this may already be underway.

Trenberth: “You don’t actually have to go a hundred years or a thousand years into the future before things can get quite disrupted relative to today. You can see some signs of that if you look around the world now. There’s certainly studies that have suggested that the changes in climate, and the droughts that occur and the wildfires and so on are already extra stressors on the system and have exacerbated wars in Sudan and in Syria. It’s one of the things which makes it very worrying for security around the world to the defense department, to the armed services, who are very concerned about the destabilizing effects of climate change around the world.”

Some of the instabilities around the world today are already leading to discussion about the possibility of using nuclear weapons. But too many nuclear weapons could trigger the “other” climate change: nuclear winter.

Toon: “Nuclear winter is caused by burning cities. If there were a nuclear war in which cities were attacked then the smoke that’s released from all those fires can go into the stratosphere and create a veil of soot particles in the upper atmosphere, which are very good at absorbing sunlight. It’s sort of like geoengineering in that sense; it reduces the temperature of the planet. Even a little war between India and Pakistan, for example — which, incidentally, have about 400 nuclear weapons between them at the moment — if they started attacking each other’s cities, the smoke from that could drop the temperature of the Earth back to preindustrial conditions. In fact, it’d be lower than anything we’ve seen in the climate record since the end of the last ice age, which would be devastating to mid-latitude agriculture.

“This is an issue people don’t really understand: the world food storage is only about 60 days. There’s not enough food on that planet to feed the population for more than 60 days. There’s only enough food in an average city to feed the city for about a week. That’s the same kind of issue that we’re coming to also with the changes in agriculture that we might face in the next century just from global warming. You have to be able to make up those food losses by shipping food from some other place. Adjusting to that takes a long time.”

Concern about our ability to adjust was a common theme. Climate change is occurring so rapidly that it will be difficult for all species, even people, to adapt quickly enough.

Trenberth: “We’re way behind in terms of what is needed because if you start really trying to take serious action on this, there’s a built-in delay of 20 or 30 years because of the infrastructure that you have in order to change that around. Then there’s another 20-year delay because the oceans respond very, very slowly. If you start making major changes now, you end up experiencing the effects of those changes maybe 40 years from now or something like that. You’ve really got to get ahead of this.

“The atmosphere is a global commons. It belongs to everyone. The air that’s over the US, a week later is over in Europe, and a week later it’s over China, and then a week later it’s back over the US again. If we dump stuff into the atmosphere, it gets shared among all of the nations.”

Toon: “Organisms are used to evolving and compensating for things, but not on a 40-year timescale. They’re used to slowly evolving and slowly responding to the environment, and here they’re being forced to respond very quickly. That’s an extinction problem. If you make a sudden change in the environment, you can cause extinctions.”

As dire as the situation might seem, there are still ways in which we can address climate change.

Toon: “I’m hopeful, at the local level, things will happen, I’m hopeful that money will be made out of converting to other energy systems, and that those things will move us forward despite the inability, apparently, of politicians to deal with things.”

Trenberth: “The real way of doing this is probably to create other kinds of incentives such as through a carbon tax, as often referred to, or a fee on carbon of some sort, which recognizes the downstream effects of burning coal both in terms of air pollution and in terms of climate change that’s currently not built into the cost of burning coal, and it really ought to be.”

Toon: “[There] is not really a question anymore about whether climate change is occurring or not. It certainly is occurring. However, how do you respond to that? What do you do? At least in the United States, it’s very clear that we’re a capitalistic society, and so we need to make it economically advantageous to develop these new energy technologies. I suspect that we’re going to see the rise of China and Asia in developing renewable energy and selling that throughout the world for the reason that it’s cheaper and they’ll make money out of it. [And] we’ll wake up behind the curve.”

Note from FLI: Among our objectives is to inspire discussion and a sharing of ideas. As such, we interview researchers and thought leaders who we believe will help spur discussion within our community. The interviews do not necessarily represent FLI’s opinions or views.

Why 2016 Was Actually a Year of Hope

Just about everyone found something to dislike about 2016, from wars to politics and celebrity deaths. But hidden within this year’s news feeds were some really exciting news stories. And some of them can even give us hope for the future.

Artificial Intelligence

Though concerns about the future of AI still loom, 2016 was a great reminder that, when harnessed for good, AI can help humanity thrive.

AI and Health

Some of the most promising and hopefully more immediate breakthroughs and announcements were related to health. Google’s DeepMind announced a new division that would focus on helping doctors improve patient care. Harvard Business Review considered what an AI-enabled hospital might look like, which would improve the hospital experience for the patient, the doctor, and even the patient’s visitors and loved ones. A breakthrough from MIT researchers could see AI used to more quickly and effectively design new drug compounds that could be applied to a range of health needs.

More specifically, Microsoft wants to cure cancer, and the company has been working with research labs and doctors around the country to use AI to improve cancer research and treatment. But Microsoft isn’t the only company that hopes to cure cancer. DeepMind Health also partnered with University College London’s hospitals to apply machine learning to diagnose and treat head and neck cancers.

AI and Society

Other researchers are turning to AI to help solve social issues. While AI has what is known as the “white guy problem” and examples of bias cropped up in many news articles, Fei Fei Li has been working with STEM girls at Stanford to bridge the gender gap. Stanford researchers also published research that suggests  artificial intelligence could help us use satellite data to combat global poverty.

It was also a big year for research on how to keep artificial intelligence safe as it continues to develop. Google and the Future of Humanity Institute made big headlines with their work to design a “kill switch” for AI. Google Brain also published a research agenda on various problems AI researchers should be studying now to help ensure safe AI for the future.

Even the White House got involved in AI this year, hosting four symposia on AI and releasing reports in October and December about the potential impact of AI and the necessary areas of research. The White House reports are especially focused on the possible impact of automation on the economy, but they also look at how the government can contribute to AI safety, especially in the near future.

AI in Action

And of course there was AlphaGo. In January, Google’s DeepMind published a paper, which announced that the company had created a program, AlphaGo, that could beat one of Europe’s top Go players. Then, in March, in front of a live audience, AlphaGo beat the reigning world champion of Go in four out of five games. These results took the AI community by surprise and indicate that artificial intelligence may be progressing more rapidly than many in the field realized.

And AI went beyond research labs this year to be applied practically and beneficially in the real world. Perhaps most hopeful was some of the news that came out about the ways AI has been used to address issues connected with pollution and climate change. For example, IBM has had increasing success with a program that can forecast pollution in China, giving residents advanced warning about days of especially bad air. Meanwhile, Google was able to reduce its power usage by using DeepMind’s AI to manipulate things like its cooling systems.

And speaking of addressing climate change…

Climate Change

With recent news from climate scientists indicating that climate change may be coming on faster and stronger than previously anticipated and with limited political action on the issue, 2016 may not have made climate activists happy. But even here, there was some hopeful news.

Among the biggest news was the ratification of the Paris Climate Agreement. But more generally, countries, communities and businesses came together on various issues of global warming, and Voices of America offers five examples of how this was a year of incredible, global progress.

But there was also news of technological advancements that could soon help us address climate issues more effectively. Scientists at Oak Ridge National Laboratory have discovered a way to convert CO2 into ethanol. A researcher from UC Berkeley has developed a method for artificial photosynthesis, which could help us more effectively harness the energy of the sun. And a multi-disciplinary team has genetically engineered bacteria that could be used to help combat global warming.

Biotechnology

Biotechnology — with fears of designer babies and manmade pandemics – is easily one of most feared technologies. But rather than causing harm, the latest biotech advances could help to save millions of people.

CRISPR

In the course of about two years, CRISPR-cas9 went from a new development to what could become one of the world’s greatest advances in biology. Results of studies early in the year were promising, but as the year progressed, the news just got better. CRISPR was used to successfully remove HIV from human immune cells. A team in China used CRISPR on a patient for the first time in an attempt to treat lung cancer (treatments are still ongoing), and researchers in the US have also received approval to test CRISPR cancer treatment in patients. And CRISPR was also used to partially restore sight to blind animals.

Gene Drive

Where CRISPR could have the most dramatic, life-saving effect is in gene drives. By using CRISPR to modify the genes of an invasive species, we could potentially eliminate the unwelcome plant or animal, reviving the local ecology and saving native species that may be on the brink of extinction. But perhaps most impressive is the hope that gene drive technology could be used to end mosquito- and tick-borne diseases, such as malaria, dengue, Lyme, etc. Eliminating these diseases could easily save over a million lives every year.

Other Biotech News

The year saw other biotech advances as well. Researchers at MIT addressed a major problem in synthetic biology in which engineered genetic circuits interfere with each other. Another team at MIT engineered an antimicrobial peptide that can eliminate many types of bacteria, including some of the antibiotic-resistant “superbugs.” And various groups are also using CRISPR to create new ways to fight antibiotic-resistant bacteria.

Nuclear Weapons

If ever there was a topic that does little to inspire hope, it’s nuclear weapons. Yet even here we saw some positive signs this year. The Cambridge City Council voted to divest their $1 billion pension fund from any companies connected with nuclear weapons, which earned them an official commendation from the U.S. Conference of Mayors. In fact, divestment may prove a useful tool for the general public to express their displeasure with nuclear policy, which will be good, since one cause for hope is that the growing awareness of the nuclear weapons situation will help stigmatize the new nuclear arms race.

In February, Londoners held the largest anti-nuclear rally Britain had seen in decades, and the following month MinutePhysics posted a video about nuclear weapons that’s been seen by nearly 1.3 million people. In May, scientific and religious leaders came together to call for steps to reduce nuclear risks. And all of that pales in comparison to the attention the U.S. elections brought to the risks of nuclear weapons.

As awareness of nuclear risks grows, so do our chances of instigating the change necessary to reduce those risks.

The United Nations Takes on Weapons

But if awareness alone isn’t enough, then recent actions by the United Nations may instead be a source of hope. As October came to a close, the United Nations voted to begin negotiations on a treaty that would ban nuclear weapons. While this might not have an immediate impact on nuclear weapons arsenals, the stigmatization caused by such a ban could increase pressure on countries and companies driving the new nuclear arms race.

The U.N. also announced recently that it would officially begin looking into the possibility of a ban on lethal autonomous weapons, a cause that’s been championed by Elon Musk, Steve Wozniak, Stephen Hawking and thousands of AI researchers and roboticists in an open letter.

Looking Ahead

And why limit our hope and ambition to merely one planet? This year, a group of influential scientists led by Yuri Milner announced an Alpha-Centauri starshot, in which they would send a rocket of space probes to our nearest star system. Elon Musk later announced his plans to colonize Mars. And an MIT scientist wants to make all of these trips possible for humans by using CRISPR to reengineer our own genes to keep us safe in space.

Yet for all of these exciting events and breakthroughs, perhaps what’s most inspiring and hopeful is that this represents only a tiny sampling of all of the amazing stories that made the news this year. If trends like these keep up, there’s plenty to look forward to in 2017.

Podcast: FLI 2016 – A Year In Review

For FLI, 2016 was a great year, full of our own success, but also great achievements from so many of the organizations we work with. Max, Meia, Anthony, Victoria, Richard, Lucas, David, and Ariel discuss what they were most excited to see in 2016 and what they’re looking forward to in 2017.

AGUIRRE: I’m Anthony Aguirre. I am a professor of physics at UC Santa Cruz, and I’m one of the founders of the Future of Life Institute.

STANLEY: I’m David Stanley, and I’m currently working with FLI as a Project Coordinator/Volunteer Coordinator.

PERRY: My name is Lucas Perry, and I’m a Project Coordinator with the Future of Life Institute.

TEGMARK: I’m Max Tegmark, and I have the fortune to be the President of the Future of Life Institute.

CHITA-TEGMARK: I’m Meia Chita-Tegmark, and I am a co-founder of the Future of Life Institute.

MALLAH: Hi, I’m Richard Mallah. I’m the Director of AI Projects at the Future of Life Institute.

KRAKOVNA: Hi everyone, I am Victoria Krakovna, and I am one of the co-founders of FLI. I’ve recently taken up a position at Google DeepMind working on AI safety.

CONN: And I’m Ariel Conn, the Director of Media and Communications for FLI. 2016 has certainly had its ups and downs, and so at FLI, we count ourselves especially lucky to have had such a successful year. We’ve continued to progress with the field of AI safety research, we’ve made incredible headway with our nuclear weapons efforts, and we’ve worked closely with many amazing groups and individuals. On that last note, much of what we’ve been most excited about throughout 2016 is the great work these other groups in our fields have also accomplished.

Over the last couple of weeks, I’ve sat down with our founders and core team to rehash their highlights from 2016 and also to learn what they’re all most looking forward to as we move into 2017.

To start things off, Max gave a summary of the work that FLI does and why 2016 was such a success.

TEGMARK: What I was most excited by in 2016 was the overall sense that people are taking seriously this idea – that we really need to win this race between the growing power of our technology and the wisdom with which we manage it. Every single way in which 2016 is better than the Stone Age is because of technology, and I’m optimistic that we can create a fantastic future with tech as long as we win this race. But in the past, the way we’ve kept one step ahead is always by learning from mistakes. We invented fire, messed up a bunch of times, and then invented the fire extinguisher. We at the Future of Life Institute feel that that strategy of learning from mistakes is a terrible idea for more powerful tech, like nuclear weapons, artificial intelligence, and things that can really alter the climate of our globe.

Now, in 2016 we saw multiple examples of people trying to plan ahead and to avoid problems with technology instead of just stumbling into them. In April, we had world leaders getting together and signing the Paris Climate Accords. In November, the United Nations General Assembly voted to start negotiations about nuclear weapons next year. The question is whether they should actually ultimately be phased out; whether the nations that don’t have nukes should work towards stigmatizing building more of them – with the idea that 14,000 is way more than anyone needs for deterrence. And – just the other day – the United Nations also decided to start negotiations on the possibility of banning lethal autonomous weapons, which is another arms race that could be very, very destabilizing. And if we keep this positive momentum, I think there’s really good hope that all of these technologies will end up having mainly beneficial uses.

Today, we think of our biologist friends as mainly responsible for the fact that we live longer and healthier lives, and not as those guys who make the bioweapons. We think of chemists as providing us with better materials and new ways of making medicines, not as the people who built chemical weapons and are all responsible for global warming. We think of AI scientists as – I hope, when we look back on them in the future – as people who helped make the world better, rather than the ones who just brought on the AI arms race. And it’s very encouraging to me that as much as people in general – but also the scientists in all these fields – are really stepping up and saying, “Hey, we’re not just going to invent this technology, and then let it be misused. We’re going to take responsibility for making sure that the technology is used beneficially.”

CONN: And beneficial AI is what FLI is primarily known for. So what did the other members have to say about AI safety in 2016? We’ll hear from Anthony first.

AGUIRRE: I would say that what has been great to see over the last year or so is the AI safety and beneficiality research field really growing into an actual research field. When we ran our first conference a couple of years ago, they were these tiny communities who had been thinking about the impact of artificial intelligence in the future and in the long-term future. They weren’t really talking to each other; they weren’t really doing much actual research – there wasn’t funding for it. So, to see in the last few years that transform into something where it takes a massive effort to keep track of all the stuff that’s being done in this space now. All the papers that are coming out, the research groups – you sort of used to be able to just find them all, easily identified. Now, there’s this huge worldwide effort and long lists, and it’s difficult to keep track of. And that’s an awesome problem to have.

As someone who’s not in the field, but sort of watching the dynamics of the research community, that’s what’s been so great to see. A research community that wasn’t there before really has started, and I think in the past year we’re seeing the actual results of that research start to come in. You know, it’s still early days. But it’s starting to come in, and we’re starting to see papers that have been basically created using these research talents and the funding that’s come through the Future of Life Institute. It’s been super gratifying. And seeing that it’s a fairly large amount of money – but fairly small compared to the total amount of research funding in artificial intelligence or other fields – but because it was so funding-starved and talent-starved before, it’s just made an enormous impact. And that’s been nice to see.

CONN: Not surprisingly, Richard was equally excited to see AI safety becoming a field of ever-increasing interest for many AI groups.

MALLAH: I’m most excited by the continued mainstreaming of AI safety research. There are more and more publications coming out by places like DeepMind and Google Brain that have really lent additional credibility to the space, as well as a continued uptake of more and more professors, and postdocs, and grad students from a wide variety of universities entering this space. And, of course, OpenAI has come out with a number of useful papers and resources.

I’m also excited that governments have really realized that this is an important issue. So, while the White House reports have come out recently focusing more on near-term AI safety research, they did note that longer-term concerns like superintelligence are not necessarily unreasonable for later this century. And that they do support – right now – funding safety work that can scale toward the future, which is really exciting. We really need more funding coming into the community for that type of research. Likewise, other governments – like the U.K. and Japan, Germany – have all made very positive statements about AI safety in one form or another. And other governments around the world.

CONN: In addition to seeing so many other groups get involved in AI safety, Victoria was also pleased to see FLI taking part in so many large AI conferences.

KRAKOVNA: I think I’ve been pretty excited to see us involved in these AI safety workshops at major conferences. So on the one hand, our conference in Puerto Rico that we organized ourselves was very influential and helped to kick-start making AI safety more mainstream in the AI community. On the other hand, it felt really good in 2016 to complement that with having events that are actually part of major conferences that were co-organized by a lot of mainstream AI researchers. I think that really was an integral part of the mainstreaming of the field. For example, I was really excited about the Reliable Machine Learning workshop at ICML that we helped to make happen. I think that was something that was quite positively received at the conference, and there was a lot of good AI safety material there.

CONN: And of course, Victoria was also pretty excited about some of the papers that were published this year connected to AI safety, many of which received at least partial funding from FLI.

KRAKOVNA: There were several excellent papers in AI safety this year, addressing core problems in safety for machine learning systems. For example, there was a paper from Stuart Russell’s lab published at NIPS, on cooperative IRL. This is about teaching AI what humans want – how to train an RL algorithm to learn the right reward function that reflects what humans want it to do. DeepMind and FHI published a paper at UAI on safely interruptible agents, that formalizes what it means for an RL agent not to have incentives to avoid shutdown. MIRI made an impressive breakthrough with their paper on logical inductors. I’m super excited about all these great papers coming out, and that our grant program contributed to these results.

CONN: For Meia, the excitement about AI safety went beyond just the technical aspects of artificial intelligence.

CHITA-TEGMARK: I am very excited about the dialogue that FLI has catalyzed – and also engaged in – throughout 2016, and especially regarding the impact of technology on society. My training is in psychology; I’m a psychologist. So I’m very interested in the human aspect of technology development. I’m very excited about questions like, how are new technologies changing us? How ready are we to embrace new technologies? Or how our psychological biases may be clouding our judgement about what we’re creating and the technologies that we’re putting out there. Are these technologies beneficial for our psychological well-being, or are they not?

So it has been extremely interesting for me to see that these questions are being asked more and more, especially by artificial intelligence developers and also researchers. I think it’s so exciting to be creating technologies that really force us to grapple with some of the most fundamental aspects, I would say, of our own psychological makeup. For example, our ethical values, our sense of purpose, our well-being, maybe our biases and shortsightedness and shortcomings as biological human beings. So I’m definitely very excited about how the conversation regarding technology – and especially artificial intelligence – has evolved over the last year. I like the way it has expanded to capture this human element, which I find so important. But I’m also so happy to feel that FLI has been an important contributor to this conversation.

CONN: Meanwhile, as Max described earlier, FLI has also gotten much more involved in decreasing the risk of nuclear weapons, and Lucas helped spearhead one of our greatest accomplishments of the year.

PERRY: One of the things that I was most excited about was our success with our divestment campaign. After a few months, we had great success in our own local Boston area with helping the City of Cambridge to divest its $1 billion portfolio from nuclear weapon producing companies. And we see this as a really big and important victory within our campaign to help institutions, persons, and universities to divest from nuclear weapons producing companies.

CONN: And in order to truly be effective we need to reach an international audience, which is something Dave has been happy to see grow this year.

STANLEY: I’m mainly excited about – at least, in my work – the increasing involvement and response we’ve had from the international community in terms of reaching out about these issues. I think it’s pretty important that we engage the international community more, and not just academics. Because these issues – things like nuclear weapons and the increasing capabilities of artificial intelligence – really will affect everybody. And they seem to be really underrepresented in mainstream media coverage as well.

So far, we’ve had pretty good responses just in terms of volunteers from many different countries around the world being interested in getting involved to help raise awareness in their respective communities, either through helping develop apps for us, or translation, or promoting just through social media these ideas in their little communities.

CONN: Many FLI members also participated in both local and global events and projects, like the following we’re about  to hear from Victoria, Richard, Lucas and Meia.

KRAKOVNA: The EAGX Oxford Conference was a fairly large conference. It was very well organized, and we had a panel there with Demis Hassabis, Nate Soares from MIRI, Murray Shanahan from Imperial, Toby Ord from FHI, and myself. I feel like overall, that conference did a good job of, for example, connecting the local EA community with the people at DeepMind, who are really thinking about AI safety concerns like Demis and also Sean Legassick, who also gave a talk about the ethics and impacts side of things. So I feel like that conference overall did a good job of connecting people who are thinking about these sorts of issues, which I think is always a great thing.  

MALLAH: I was involved in this endeavor with IEEE regarding autonomy and ethics in autonomous systems, sort of representing FLI’s positions on things like autonomous weapons and long-term AI safety. One thing that came out this year – just a few days ago, actually, due to this work from IEEE – is that the UN actually took the report pretty seriously, and it may have influenced their decision to take up the issue of autonomous weapons formally next year. That’s kind of heartening.

PERRY: A few different things that I really enjoyed doing were giving a few different talks at Duke and Boston College, and a local effective altruism conference. I’m also really excited about all the progress we’re making on our nuclear divestment application. So this is an application that will allow anyone to search their mutual fund and see whether or not their mutual funds have direct or indirect holdings in nuclear weapons-producing companies.

CHITA-TEGMARK:  So, a wonderful moment for me was at the conference organized by Yann LeCun in New York at NYU, when Daniel Kahneman, one of my thinker-heroes, asked a very important question that really left the whole audience in silence. He asked, “Does this make you happy? Would AI make you happy? Would the development of a human-level artificial intelligence make you happy?” I think that was one of the defining moments, and I was very happy to participate in this conference.

Later on, David Chalmers, another one of my thinker-heroes – this time, not the psychologist but the philosopher – organized another conference, again at NYU, trying to bring philosophers into this very important conversation about the development of artificial intelligence. And again, I felt there too, that FLI was able to contribute and bring in this perspective of the social sciences on this issue.

CONN: Now, with 2016 coming to an end, it’s time to turn our sites to 2017, and FLI is excited for this new year to be even more productive and beneficial.

TEGMARK: We at the Future of Life Institute are planning to focus primarily on artificial intelligence, and on reducing the risk of accidental nuclear war in various ways. We’re kicking off by having an international conference on artificial intelligence, and then we want to continue throughout the year providing really high-quality and easily accessible information on all these key topics, to help inform on what happens with climate change, with nuclear weapons, with lethal autonomous weapons, and so on.

And looking ahead here, I think it’s important right now – especially since a lot of people are very stressed out about the political situation in the world, about terrorism, and so on – to not ignore the positive trends and the glimmers of hope we can see as well.

CONN: As optimistic as FLI members are about 2017, we’re all also especially hopeful and curious to see what will happen with continued AI safety research.

AGUIRRE: I would say I’m looking forward to seeing in the next year more of the research that comes out, and really sort of delving into it myself, and understanding how the field of artificial intelligence and artificial intelligence safety is developing. And I’m very interested in this from the forecast and prediction standpoint.

I’m interested in trying to draw some of the AI community into really understanding how artificial intelligence is unfolding – in the short term and the medium term – as a way to understand, how long do we have? Is it, you know, if it’s really infinity, then let’s not worry about that so much, and spend a little bit more on nuclear weapons and global warming and biotech, because those are definitely happening. If human-level AI were 8 years away… honestly, I think we should be freaking out right now. And most people don’t believe that, I think most people are in the middle it seems, of thirty years or fifty years or something, which feels kind of comfortable. Although it’s not that long, really, on the big scheme of things. But I think it’s quite important to know now, which is it? How fast are these things, how long do we really have to think about all of the issues that FLI has been thinking about in AI? How long do we have before most jobs in industry and manufacturing are replaceable by a robot being slotted in for a human? That may be 5 years, it may be fifteen… It’s probably not fifty years at all. And having a good forecast on those good short-term questions I think also tells us what sort of things we have to be thinking about now.

And I’m interested in seeing how this massive AI safety community that’s started develops. It’s amazing to see centers kind of popping up like mushrooms after a rain all over and thinking about artificial intelligence safety. This partnership on AI between Google and Facebook and a number of other large companies getting started. So to see how those different individual centers will develop and how they interact with each other. Is there an overall consensus on where things should go? Or is it a bunch of different organizations doing their own thing? Where will governments come in on all of this? I think it will be interesting times. So I look forward to seeing what happens, and I will reserve judgement in terms of my optimism.

KRAKOVNA: I’m really looking forward to AI safety becoming even more mainstream, and even more of the really good researchers in AI giving it serious thought. Something that happened in the past year that I was really excited about, that I think is also pointing in this direction, is the research agenda that came out of Google Brain called “Concrete Problems in AI Safety.” And I think I’m looking forward to more things like that happening, where AI safety becomes sufficiently mainstream that people who are working in AI just feel inspired to do things like that and just think from their own perspectives: what are the important problems to solve in AI safety? And work on them.

I’m a believer in the portfolio approach with regards to AI safety research, where I think we need a lot of different research teams approaching the problems from different angles and making different assumptions, and hopefully some of them will make the right assumption. I think we are really moving in the direction in terms of more people working on these problems, and coming up with different ideas. And I look forward to seeing more of that in 2017. I think FLI can also help continue to make this happen.

MALLAH: So, we’re in the process of fostering additional collaboration among people in the AI safety space. And we will have more announcements about this early next year. We’re also working on resources to help people better visualize and better understand the space of AI safety work, and the opportunities there and the work that has been done. Because it’s actually quite a lot.

I’m also pretty excited about fostering continued theoretical work and practical work in making AI more robust and beneficial. The work in value alignment, for instance, is not something we see supported in mainstream AI research. And this is something that is pretty crucial to the way that advanced AIs will need to function. It won’t be very explicit instructions to them; they’ll have to be making decision based on what they think is right. And what is right? It’s something that… or even structuring the way to think about what is right requires some more research.

STANLEY: We’ve had pretty good success at FLI in the past few years helping to legitimize the field of AI safety. And I think it’s going to be important because AI is playing a large role in industry and there’s a lot of companies working on this, and not just in the US. So I think increasing international awareness about AI safety is going to be really important.

CHITA-TEGMARK: I believe that the AI community has raised some very important questions in 2016 regarding the impact of AI on society. I feel like 2017 should be the year to make progress on these questions, and actually research them and have some answers to them. For this, I think we need more social scientists – among people from other disciplines – to join this effort of really systematically investigating what would be the optimal impact of AI on people. I hope that in 2017 we will have more research initiatives, that we will attempt to systematically study other burning questions regarding the impact of AI on society. Some examples are: how can we ensure the psychological well-being for people while AI creates lots of displacement on the job market as many people predict. How do we optimize engagement with technology, and withdrawal from it also? Will some people be left behind, like the elderly or the economically disadvantaged? How will this affect them, and how will this affect society at large?

What about withdrawal from technology? What about satisfying our need for privacy? Will we be able to do that, or is the price of having more and more customized technologies and more and more personalization of the technologies we engage with… will that mean that we will have no privacy anymore, or that our expectations of privacy will be very seriously violated? I think these are some very important questions that I would love to get some answers to. And my wish, and also my resolution, for 2017 is to see more progress on these questions, and to hopefully also be part of this work and answering them.

PERRY: In 2017 I’m very interested in pursuing the landscape of different policy and principle recommendations from different groups regarding artificial intelligence. I’m also looking forward to expanding out nuclear divestment campaign by trying to introduce divestment to new universities, institutions, communities, and cities.

CONN: In fact, some experts believe nuclear weapons pose a greater threat now than at any time during our history.

TEGMARK: I personally feel that the greatest threat to the world in 2017 is one that the newspapers almost never write about. It’s not terrorist attacks, for example. It’s the small but horrible risk that the U.S. and Russia for some stupid reason get into an accidental nuclear war against each other. We have 14,000 nuclear weapons, and this war has almost happened many, many times. So, actually what’s quite remarkable and really gives a glimmer of hope is that – however people may feel about Putin and Trump – the fact is they are both signaling strongly that they are eager to get along better. And if that actually pans out and they manage to make some serious progress in nuclear arms reduction, that would make 2017 the best year for nuclear weapons we’ve had in a long, long time, reversing this trend of ever greater risks with ever more lethal weapons.

CONN: Some FLI members are also looking beyond nuclear weapons and artificial intelligence, as I learned when I asked Dave about other goals he hopes to accomplish with FLI this year.

STANLEY: Definitely having the volunteer team – particularly the international volunteers – continue to grow, and then scale things up. Right now, we have a fairly committed core of people who are helping out, and we think that they can start recruiting more people to help out in their little communities, and really making this stuff accessible. Not just to academics, but to everybody. And that’s also reflected in the types of people we have working for us as volunteers. They’re not just academics. We have programmers, linguists, people having just high school degrees all the way up to Ph.D.’s, so I think it’s pretty good that this varied group of people can get involved and contribute, and also reach out to other people they can relate to.

CONN: In addition to getting more people involved, Meia also pointed out that one of the best ways we can help ensure a positive future is to continue to offer people more informative content.

CHITA-TEGMARK: Another thing that I’m very excited about regarding our work here at the Future of Life Institute is this mission of empowering people to information. I think information is very powerful and can change the way people approach things: they can change their beliefs, their attitudes, and their behaviors as well. And by creating ways in which information can be readily distributed to the people, and with which they can engage very easily, I hope that we can create changes. For example, we’ve had a series of different apps regarding nuclear weapons that I think have contributed a lot to peoples knowledge and has brought this issue to the forefront of their thinking.

CONN: Yet as important as it is to highlight the existential risks we must address to keep humanity safe, perhaps it’s equally important to draw attention to the incredible hope we have for the future if we can solve these problems. Which is something both Richard and Lucas brought up for 2017.

MALLAH: I’m excited about trying to foster more positive visions of the future, so focusing on existential hope aspects of the future. Which are kind of the flip side of existential risks. So we’re looking at various ways of getting people to be creative about understanding some of the possibilities, and how to differentiate the paths between the risks and the benefits.

PERRY: Yeah, I’m also interested in creating and generating a lot more content that has to do with existential hope. Given the current global political climate, it’s all the more important to focus on how we can make the world better.

CONN: And on that note, I want to mention one of the most amazing things I discovered this past year. It had nothing to do with technology, and everything to do with people. Since starting at FLI, I’ve met countless individuals who are dedicating their lives to trying to make the world a better place. We may have a lot of problems to solve, but with so many groups focusing solely on solving them, I’m far more hopeful for the future. There are truly too many individuals that I’ve met this year to name them all, so instead, I’d like to provide a rather long list of groups and organizations I’ve had the pleasure to work with this year. A link to each group can be found at futureoflife.org/2016, and I encourage you to visit them all to learn more about the wonderful work they’re doing. In no particular order, they are:

Machine Intelligence Research Institute

Future of Humanity Institute

Global Catastrophic Risk Institute

Center for the Study of Existential Risk

Ploughshares Fund

Bulletin of Atomic Scientists

Open Philanthropy Project

Union of Concerned Scientists

The William Perry Project

ReThink Media

Don’t Bank on the Bomb

Federation of American Scientists

Massachusetts Peace Action

IEEE (Institute for Electrical and Electronics Engineers)

Center for Human-Compatible Artificial Intelligence

Center for Effective Altruism

Center for Applied Rationality

Foresight Institute

Leverhulme Center for the Future of Intelligence

Global Priorities Project

Association for the Advancement of Artificial Intelligence

International Joint Conference on Artificial Intelligence

Partnership on AI

The White House Office of Science and Technology Policy

The Future Society at Harvard Kennedy School

 

I couldn’t be more excited to see what 2017 holds in store for us, and all of us at FLI look forward to doing all we can to help create a safe and beneficial future for everyone. But to end on an even more optimistic note, I turn back to Max.

TEGMARK: Finally, I’d like – because I spend a lot of my time thinking about our universe – to remind everybody that we shouldn’t just be focused on the next election cycle. We have not decades, but billions of years of potentially awesome future for life, on Earth and far beyond. And it’s so important to not let ourselves get so distracted by our everyday little frustrations that we lose sight of these incredible opportunities that we all stand to gain from if we can get along, and focus, and collaborate, and use technology for good.

Artificial Photosynthesis: Can We Harness the Energy of the Sun as Well as Plants?

Click here to see this page in other languages : Russian 

In the early 1900s, the Italian chemist Giacomo Ciamician recognized that fossil fuel use was unsustainable. And like many of today’s environmentalists, he turned to nature for clues on developing renewable energy solutions, studying the chemistry of plants and their use of solar energy. He admired their unparalleled mastery of photochemical synthesis—the way they use light to synthesize energy from the most fundamental of substances—and how “they reverse the ordinary process of combustion.”

In photosynthesis, Ciamician realized, lay an entirely renewable process of energy creation. When sunlight reaches the surface of a green leaf, it sets off a reaction inside the leaf. Chloroplasts, energized by the light, trigger the production of chemical products—essentially sugars—which store the energy such that the plant can later access it for its biological needs. It is an entirely renewable process; the plant harvests the immense and constant supply of solar energy, absorbs carbon dioxide and water, and releases oxygen. There is no other waste.

If scientists could learn to imitate photosynthesis by providing concentrated carbon dioxide and suitable catalyzers, they could create fuels from solar energy. Ciamician was taken by the seeming simplicity of this solution. Inspired by small successes in chemical manipulation of plants, he wondered, “does it not seem that, with well-adapted systems of cultivation and timely intervention, we may succeed in causing plants to produce, in quantities much larger than the normal ones, the substances which are useful to our modern life?”

In 1912, Ciamician sounded the alarm about the unsustainable use of fossil fuels, and he exhorted the scientific community to explore artificially recreating photosynthesis. But little was done. A century later, however, in the midst of a climate crisis, and armed with improved technology and growing scientific knowledge, his vision reached a major breakthrough.

After more than ten years of research and experimentation, Peidong Yang, a chemist at UC Berkeley, successfully created the first photosynthetic biohybrid system (PBS) in April 2015. This first-generation PBS uses semiconductors and live bacteria to do the photosynthetic work that real leaves do—absorb solar energy and create a chemical product using water and carbon dioxide, while releasing oxygen—but it creates liquid fuels. The process is called artificial photosynthesis, and if the technology continues to improve, it may become the future of energy.

How Does This System Work?

Yang’s PBS can be thought of as a synthetic leaf. It is a one-square-inch tray that contains silicon semiconductors and living bacteria; what Yang calls a semiconductor-bacteria interface.

In order to initiate the process of artificial photosynthesis, Yang dips the tray of materials into water, pumps carbon dioxide into the water, and shines a solar light on it. As the semiconductors harvest solar energy, they generate charges to carry out reactions within the solution. The bacteria take electrons from the semiconductors and use them to transform, or reduce, carbon dioxide molecules and create liquid fuels. In the meantime, water is oxidized on the surface of another semiconductor to release oxygen. After several hours or several days of this process, the chemists can collect the product.

With this first-generation system, Yang successfully produced butanol, acetate, polymers, and pharmaceutical precursors, fulfilling Ciamician’s once-far-fetched vision of imitating plants to create the fuels that we need. This PBS achieved a solar-to-chemical conversion efficiency of 0.38%, which is comparable to the conversion efficiency in a natural, green leaf.

first-g-ap

A diagram of the first-generation artificial photosynthesis, with its four main steps.

Describing his research, Yang says, “Our system has the potential to fundamentally change the chemical and oil industry in that we can produce chemicals and fuels in a totally renewable way, rather than extracting them from deep below the ground.”

If Yang’s system can be successfully scaled up, businesses could build artificial forests that produce the fuel for our cars, planes, and power plants by following the same laws and processes that natural forests follow. Since artificial photosynthesis would absorb and reduce carbon dioxide in order to create fuels, we could continue to use liquid fuel without destroying the environment or warming the planet.

However, in order to ensure that artificial photosynthesis can reliably produce our fuels in the future, it has to be better than nature, as Ciamician foresaw. Our need for renewable energy is urgent, and Yang’s model must be able to provide energy on a global scale if it is to eventually replace fossil fuels.

Recent Developments in Yang’s Artificial Photosynthesis

Since the major breakthrough in April 2015, Yang has continued to improve his system in hopes of eventually producing fuels that are commercially viable, efficient, and durable.

In August 2015, Yang and his team tested his system with a different type of bacteria. The method is the same, except instead of electrons, the bacteria use molecular hydrogen from water molecules to reduce carbon dioxide and create methane, the primary component of natural gas. This process is projected to have an impressive conversion efficiency of 10%, which is much higher than the conversion efficiency in natural leaves.

A conversion efficiency of 10% could potentially be commercially viable, but since methane is a gas it is more difficult to use than liquid fuels such as butanol, which can be transferred through pipes. Overall, this new generation of PBS needs to be designed and assembled in order to achieve a solar-to-liquid-fuel efficiency above 10%.

second-g-ap

A diagram of this second-generation PBS that produces methane.

In December 2015, Yang advanced his system further by making the remarkable discovery that certain bacteria could grow the semiconductors by themselves. This development short-circuited the two-step process of growing the nanowires and then culturing the bacteria in the nanowires. The improved semiconductor-bacteria interface could potentially be more efficient in producing acetate, as well as other chemicals and fuels, according to Yang. And in terms of scaling up, it has the greatest potential.

third-g-ap

A diagram of this third-generation PBS that produces acetate.

In the past few weeks, Yang made yet another important breakthrough in elucidating the electron transfer mechanism between the semiconductor-bacteria interface. This sort of fundamental understanding of the charge transfer at the interface will provide critical insights for the designing of the next generation PBS with better efficiency and durability. He will be releasing the details of this breakthrough shortly.

Despite these important breakthroughs and modifications to the PBS, Yang clarifies, “the physics of the semiconductor-bacteria interface for the solar driven carbon dioxide reduction is now established.” As long as he has an effective semiconductor that absorbs solar energy and feeds electrons to the bacteria, the photosynthetic function will initiate, and the remarkable process of artificial photosynthesis will continue to produce liquid fuels.

Why This Solar Power Is Unique

Peter Forbes, a science writer and the author of Nanoscience: Giants of the Infinitesimal, admires Yang’s work in creating this system. He writes, “It’s a brilliant synthesis: semiconductors are the most efficient light harvesters, and biological systems are the best scavengers of CO2.”

Yang’s artificial photosynthesis only relies on solar energy. But it creates a more useable source of energy than solar panels, which are currently the most popular and commercially viable form of solar power. While the semiconductors in solar panels absorb solar energy and convert it into electricity, in artificial photosynthesis, the semiconductors absorb solar energy and store it in “the carbon-carbon bond or the carbon-hydrogen bond of liquid fuels like methane or butanol.”

This difference is crucial. The electricity generated from solar panels simply cannot meet our diverse energy needs, but these renewable liquid fuels and natural gases can. Unlike solar panels, Yang’s PBS absorbs and breaks down carbon dioxide, releases oxygen, and creates a renewable fuel that can be collected and used. With artificial photosynthesis creating our fuels, driving cars and operating machinery becomes much less harmful. As Katherine Bourzac phrases nicely, “This is one of the best attempts yet to realize the simple equation: sun + water + carbon dioxide = sustainable fuel.”

The Future of Artificial Photosynthesis

Yang’s PBS has been advancing rapidly, but he still has work to do before the technology can be considered commercially viable. Despite encouraging conversion efficiencies, especially with methane, the PBS is not durable enough or cost-effective enough to be marketable.

In order to improve this system, Yang and his team are working to figure out how to replace bacteria with synthetic catalysts. So far, bacteria have proven to be the most efficient catalysts, and they also have high selectivity—that is, they can create a variety of useful compounds such as butanol, acetate, polymers and methane. But since bacteria live and die, they are less durable than a synthetic catalyst and less reliable if this technology is scaled up.

Yang has been testing PBS’s with live bacteria and synthetic catalysts in parallel systems in order to discover which type works best. “From the point of view of efficiency and selectivity of the final product, the bacteria approach is winning,” Yang says, “but if down the road we can find a synthetic catalyst that can produce methane and butanol with similar selectivity, then that is the ultimate solution.” Such a system would give us the ideal fuels and the most durable semiconductor-catalyst interface that can be reliably scaled up.

Another concern is that, unlike natural photosynthesis, artificial photosynthesis requires concentrated carbon dioxide to function. This is easy to do in the lab, but if artificial photosynthesis is scaled up, Yang will have to find a feasible way of supplying concentrated carbon dioxide to the PBS. Peter Forbes argues that Yang’s artificial photosynthesis could be “coupled with carbon-capture technology to pull COfrom smokestack emissions and convert it into fuel”. If this could be done, artificial photosynthesis would contribute to a carbon-neutral future by consuming our carbon emissions and releasing oxygen. This is not the focus of Yang’s research, but it is an integral piece of the puzzle that other scientists must provide if artificial photosynthesis is to supply the fuels we need on a large scale.

When Giacomo Ciamician considered the future of artificial photosynthesis, he imagined a future of abundant energy where humans could master the “photochemical processes that hitherto have been the guarded secret of the plants…to make them bear even more abundant fruit than nature, for nature is not in a hurry and mankind is.” And while the rush was not apparent to scientists in 1912, it is clear now, in 2016.

Peidong Yang has already created a system of artificial photosynthesis that out-produces nature. If he continues to increase the efficiency and durability of his PBS, artificial photosynthesis could revolutionize our energy use and serve as a sustainable model for generations to come. As long as the sun shines, artificial photosynthesis can produce fuels and consume waste. And in this future of artificial photosynthesis, the world would be able to grow and use fuels freely; knowing that the same, natural process that created them would recycle the carbon at the other end.

Yang shares this hope for the future. He explains, “Our vision of a cyborgian evolution—biology augmented with inorganic materials—may bring the PBS concept to full fruition, selectively combining the best of both worlds, and providing society with a renewable solution to solve the energy problem and mitigate climate change.”

If you would like to learn more about Peidong Yang’s research, please visit his website at http://nanowires.berkeley.edu/.

Developing Countries Can’t Afford Climate Change

Click here to see this page in other languages: Russian

Developing countries currently cannot sustain themselves, let alone grow, without relying heavily on fossil fuels. Global warming typically takes a back seat to feeding, housing, and employing these countries’ citizens. Yet the weather fluctuations and consequences of climate change are already impacting food growth in many of these countries. Is there a solution?

Developing Countries Need Fossil Fuels

Fossil fuels are still the cheapest, most reliable energy resources available. When a developing country wants to build a functional economic system and end rampant poverty, it turns to fossil fuels.

India, for example, is home to one-third of the world’s 1.2 billion citizens living in poverty. That’s 400 million people in one country without sufficient food or shelter (for comparison, the entire U.S. population is roughly 323 million people). India hopes to transition to renewable energy as its economy grows, but the investment needed to meet its renewable energy goals “is equivalent to over four times the country’s annual defense spending, and over ten times the country’s annual spending on health and education.”

Unless something changes, developing countries like India cannot fight climate change and provide for their citizens. In fact, developing countries will only accelerate global warming as their economies grow because they cannot afford alternatives. Wealthy countries cannot afford to ignore the impact of these growing, developing countries.

The Link Between Economic Growth and CO2

According to a World Bank report, “poor and middle-income countries already account for just over half of total carbon emissions.” And this percentage will only rise as developing countries grow. Achieving a global society in which all citizens earn a living wage and climate catastrophe is averted requires breaking the link between economic growth and increasing carbon emissions in developing countries.

Today, most developing countries that decrease their poverty rates also have increased rates of carbon emissions. In East Asia and the Pacific, the number of people living in extreme poverty declined from 1.1 billion to 161 million between 1981 and 2011—an 85% decrease. In this same time period, the amount of carbon dioxide per capita rose from 2.1 tons per capita to 5.9 tons per capita—a 185% increase.

South Asia saw similar changes during this time frame. As the number of people living in extreme poverty decreased by 30%, the amount of carbon dioxide increased by 204%.

In Sub-Saharan Africa, the number of people living in poverty increased by 98% in this thirty-year span, while carbon dioxide per capita decreased by 17%. Given the current energy situation, if sub-Saharan Africans are to escape extreme poverty, they will have to increase their carbon use—unless developed countries step in to offer clean alternatives.

Carbon Emissions Rate Vs. Total

Many wealthier countries have been researching alternative forms of energy for decades. And that work may be starting to pay off.

New data shows that, since the year 2000, 21 developed countries have reduced annual greenhouse gas emissions while simultaneously growing their economies. Moreover, this isn’t all related to a drop in the industrial sector. Uzbekistan, Bulgaria, Switzerland, and the Czech Republic demonstrated that countries do not need to shrink their industrial sectors to break the link between economic growth and increased greenhouse gas emissions.

Most importantly, global carbon emissions stalled from 2014 to 2015 as the global economy grew.

But is this rate of global decoupling fast enough to keep the planet from warming another two degrees Celsius? When emissions stall at 32.1 billion metric tons for two years, that’s still 64.2 billion metric tons of carbon being pumped into the atmosphere over two years.

The carbon emissions rate might fall, but the total continues to grow enormously. A sharp decline in carbon emissions is necessary to keep the planet at a safe global temperature. At the 2015 Paris Climate Conference, the United Nations concluded that in order to keep global temperatures from rising another two degrees Celsius, global carbon emissions “must fall to net zero in the second half of the century.”

In order to encourage this, the Paris agreement included measures to ensure that wealthy countries finance developing countries “with respect to both mitigation and adaptation.” For mitigation, countries are expected to abide by their pledges to reduce emissions and use more renewable energy, and for adaptation, the deal sets a global goal for “enhancing adaptive capacity, strengthening resilience and reducing vulnerability to climate change.”

Incentivizing R&D

One way wealthy countries can benefit both themselves and developing countries is through research and development. As wealthier countries develop cheaper forms of alternative energy, developing countries can take advantage of the new technologies. Wealthy countries can also help subsidize renewable energy for countries dealing with higher rates of poverty.

Yet, as of 2014, wealthy countries had invested very little in this process, providing only 0.2% of developing countries’ GDP for adaptation and mitigation. Moreover, a 2015 paper from the IMF revealed that while we spend $100 billion per year subsidizing renewable energy, we spend an estimated $5.3 trillion subsidizing fossil fuels. This fossil fuel subsidy includes “the uncompensated costs of air pollution, congestion and global warming.”

Such a huge disparity indicates that wealthy countries either need stronger incentives or stronger legal obligations to shift this fossil fuel money towards renewable energy. The Paris agreement intends to strengthen legal obligations, but its language is vague, and it lacks details that would ensure wealthy countries follow through with their responsibilities.

However, despite the shortcomings of legal obligations, monetary incentives do exist. India, for example, wants to vastly increase its solar power capacity to address this global threat. They need $100 billion to fund this expansion, which could spell a huge opportunity for U.S. banks, according to Raymond Vickery, an expert on U.S-India economic ties. This would be a boon for the U.S. economy, and it would set an important precedent for other wealthy countries to assist and invest in developing countries.

However, global leaders need to move quickly. The effects of global warming already threaten the world and the economies of developing countries, especially India.

Global Impact of Climate Change

India relies on the monsoon cycle to water crops and maintain its “nearly $370 billion agricultural sector and hundreds of millions of jobs.” Yet as the Indian Ocean has warmed, the monsoon cycle has become unreliable, resulting in massive droughts and dying crops.

Across the globe, scientists expect developing countries such as India to be hit hardest by rising temperatures and changes in rainfall. Furthermore, these countries with limited financial resources and weak infrastructure will struggle to adapt and sustain their economic growth in the face of changing climate. Nicholas Stern predicts that a two-degree rise in temperature would cost about 1% of world GDP. But the World Bank estimates that it would cost India 5% of their GDP.

Moreover, changes such as global warming act as “threat multipliers” because they increase the likelihood of other existential threats. In India, increased carbon dioxide emissions have contributed to warmer temperatures, which have triggered extensive droughts and increased poverty. But the problems don’t end here. Higher levels of hunger and poverty can magnify political tensions, potentially leading to conflict and even nuclear war. India and Pakistan both have nuclear weapons—if drought expands and cripples their economies, violence can more easily erupt.

Alternatively, wealthy nations could capitalize on investment opportunities in developing countries. In doing so, their own economies will benefit while simultaneously aiding the effort to reach net zero carbon emissions.

Global warming is, by definition, a global crisis. Mitigating this threat will require global cooperation and global solutions.

Op-ed: Being Alarmed Is Not the Same as Being an Alarmist

When the evidence clearly suggests that we’re heading toward a catastrophe, scientists shouldn’t hesitate to make their feelings known to the public. So, at what point should scientists begin to publicly worry about the environment?

Scientists are trained to report their findings in a disinterested manner. The aim is to be as objective as possible, and this means bracketing one’s feelings in favor of the facts.

But what happens when the evidence suggests that humanity is racing towards a global, irreversible disaster? What happens when the results of scientific inquiry clearly warrant activism in favor of a particular law or policy?

Once in a while, scientists do express their personal thoughts about the results of scientific research. For example, in 2012, a geophysics researcher from the University of San Diego, Brad Werner, gave a presentation at the large, annual American Geophysical Union conference. His talk was titled “Is Earth F**cked?,” and as he told a reporter for iO9 afterwards, the answer is “more or less.”

Two years later, after a group of scientists found “vast methane plumes escaping from the seafloor,” the glaciologist Jason Box echoed Werner’s pessimism, tweeting: “If even a small fraction of Arctic sea floor carbon is released to the atmosphere, we’re f ’d.”

Rewriting Records

There’s good reason for scientists to be honest and open about the implications of their research. The environmental situation today really is dire.

According to Gavin Schmidt of NASA’s Goddard Institute of Space Studies, there’s a 99% probability that 2016 will become the hottest year on record, surpassing the previous record set by 2015, which itself surpassed the previous record set by 2014. In fact, the hottest 16 years have all occurred since 2000, with only a single exception (1998).

Even more, last June was the 14th consecutive month to set a temperature record. And in July, Kuwait experienced the highest temperature ever recorded in the Eastern hemisphere, with temperatures reaching 129.2 degrees (F). In nearby Iraq, the mercury peaked at 129.0 degrees. As Jason Samenow notes, “It’s also possible that [the] 129.2-degree reading matches the hottest ever reliably measured anywhere in the world” (italics added).

Meanwhile, the amount of carbon dioxide in the atmosphere continues to climb at a meteoric rate. Before the Industrial Revolution, the concentration was 280 parts per million (ppm). But recent years have seen it surpass 400 ppm. Initially, this has occurred for only  part of the year because of the seasonal life cycles of plants, which remove atmospheric carbon dioxide.

Last year, though, the average concentration of carbon dioxide exceeded 400 ppm for the first time ever. And scientists are now saying that “carbon dioxide will never fall below 400 ppm this year, nor the next, nor the next.” In other words, no human alive today will ever again experience an atmosphere with less than 400 ppm. As the meteorologist Richard Betts puts it, “These numbers are … a reminder of the long-term effects we’re having on the system.”

Worrisome Weather

Along with record-breaking temperatures and changes to atmospheric chemistry, recent months have seen many extreme weather events. This is in part due to the 2015-2016 El Niño climate cycle, which has been “probably the most powerful in the last 100 years.”

But the more fundamental driver of extreme weather is climate change. Research shows that climate change will result in more severe floods, droughts, heat waves, and hurricanes. According to a study conducted by scientists at NASA, Cornell, and Columbia universities, we should expect “megadroughts” in the US lasting decades.

Another study predicts that certain regions could experience heat waves so scorching that “one would overheat even if they were naked in the shade, soaking wet and standing in front of a large fan.” Yet another report found that lightning strikes will increase by 50% this century.

Until recently, it was difficult for climatologists to link particular instances of extreme weather with human-caused changes to the climate. Asking whether climate change caused event X is like asking whether smoking caused Jack’s lung cancer. A doctor can explain that Jack-the-smoker is statistically more likely to get cancer than Jack-the-nonsmoker. However, a direct link is indiscernible.

But this situation is changing, as a recent report from the National Academy of Sciences affirms. Scientists are increasingly able to connect climate change with particular instances of extreme weather. And the results are worrisome.

For example, a study from last year links climate change to the 2007-2010 Syrian drought. This record-breaking event fueled the Syrian civil war by instigating a large migration of farmers into Syria’s urban centers. Furthermore, this conflict gave rise to terrorist groups like the Islamic State and Jabhat al-Nusra (al-Qaeda’s Syrian affiliate). In other words, one can trace an unbroken series of causes from climate change to the Syrian civil war to terrorism.

Panicking in Public

Climate change is a clear and present danger. Scientists don’t debate about whether it’s occurring. Nor do they disagree that its consequences will be global, catastrophic, and irreversible. According to the World Bank, “the global community is not prepared for a swift increase in climate change-related natural disasters — such as floods and droughts — which will put 1.3 billion people at risk by 2050.”

Given the high stakes and the well-established science, scientists should be waving their arms and shouting, “The situation is urgent! We must act now! The future of civilization depends upon it!” In the process, they should take care to distinguish between the distinct attitudes of “being alarmed” and “being an alarmist,” which many pundits, politicians, and journalists often conflate. The first occurs when one responds proportionally to the best available evidence. The second is what happens when one’s fear and anxiety go beyond the evidence.

Being alarmed is the appropriate response to an alarming situation, and the situation today really is alarming.

The ongoing catastrophe of climate change is not out of our control. But if we don’t act soon, Werner could be right that Earth is, well, in bad shape.

Note from FLI: Among our objectives is to inspire discussion and a sharing of ideas. As such, we post op-eds that we believe will help spur discussion within our community. Op-eds do not necessarily represent FLI’s opinions or views.

Podcast: Could an Earthquake Destroy Humanity?

Earthquakes as Existential Risks

Earthquakes are not typically considered existential or even global catastrophic risks, and for good reason: they’re localized events. While they may be devastating to the local community, rarely do they impact the whole world. But is there some way an earthquake could become an existential or catastrophic risk? Could a single earthquake put all of humanity at risk? In our increasingly connected world, could an earthquake sufficiently exacerbate a biotech, nuclear or economic hazard, triggering a cascading set of circumstances that could lead to the downfall of modern society?

Seth Baum of the Global Catastrophic Risk Institute and Ariel Conn of FLI consider extreme earthquake scenarios to figure out if there’s any way such a risk is remotely plausible. This podcast was produced in a similar vein to Myth Busters and xkcd’s What If series.

We only consider a few scenarios in this podcast, but we’d love to hear from other people. Do you have ideas for an extreme situation that could transform a locally devastating earthquake into a global calamity?

This episode features insight from seismologist Martin Chapman of Virginia Tech.

Note from FLI: Among our objectives is to inspire discussion and a sharing of ideas. As such, we interview researchers and thought leaders who we believe will help spur discussion within our community. The interviews do not necessarily represent FLI’s opinions or views.