Skip to content
Grant

Security Evaluation of Machine Learning Systems

Amount recommended
$98,532.00
Grant program
Primary investigator
Benjamin Rubinstein, The University of Melbourne
Project summary

Machine Learning and Artificial Intelligence underpin technologies that we rely on daily, from consumer electronics (smart phones), medical implants (continuous blood glucose monitors), websites (Facebook, Google), to the systems that defend critical infrastructure. The very characteristic that makes these systems so beneficial — adaptability — can also be exploited by sophisticated adversaries wishing to breach system security or gain an economic advantage. This project will develop usable software tools for evaluating vulnerabilities in learning systems, a first step towards general-purpose, secure machine learning.

Technical abstract

This project aims to develop systems for the analysis of machine learning algorithms in adversarial environments. Today Machine Learning and Statistics are employed in many technologies where participants have an incentive to game the system, for example internet ad placement, cybersecurity, credit risk in finance, health analytics, and smart utility grids. However little is known about how well state-of-the-art inference techniques fare when data is manipulated by a malicious adversary. By formulating the process of evading a learned model, or manipulating training data to poison learning, as an optimization program, our approach to evaluating security reduces to one a projected subgradient descent. Our main method for solving such iterative optimizations generically, will be to employ the dynamic code analysis represented by automatic differentiation. A key output of this project will be usable software tools for evaluating the security of learning systems in general.

Published by the Future of Life Institute on 1 February, 2023

Sign up for the Future of Life Institute newsletter

Join 40,000+ others receiving periodic updates on our work and cause areas.
cloudmagnifiercrossarrow-up linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram