Grant
Faster Verification of AI-based Cyber-physical Systems
$200,000.00
Andre Platzer, Carnegie Mellon University
The most exciting and impactful uses of artificial intelligence (AI) that will affect everybody in crucial ways involve smart decision making to help people in the real world, such as when driving cars or flying aircraft, or help from robots engaging with humans. All of these have a huge potential for making the world a better place but also impose considerable responsibility on the system designer to ensure it will not do more harm than good because its decisions are sometimes systematically unsafe. Responsibly allowing mankind to rely on such technology requires stringent assurance of its safety. A nontrivial enterprise for the decision flexibility in AI. The goal of this research project is to develop formal verification and validation technology that helps ensure safety, robustness, and reliability of AI-based system designs. The world is an uncertain place. So perfect performance cannot always be guaranteed in all respects. But good system designs do not compromise safety when their performance degrades. The PI is proposing to advance his verification tool KeYmaera that has been used successfully for systems known as cyber-physical systems (combining computer decisions with physics or motion) toward the additional challenges that a deep integration of AI into those systems provides.
The most important and most impactful AI-based systems are those that directly interface with the physical world. Cyber-physical systems (CPS) combine computers (for decisions) and physics (motion) and play a prominent role, e.g., in cars, aircraft, robots. Due to their impact on people, they come with stringent safety requirements in order to make sure they make the world a better place. In order to enable sophisticated automation for these systems, AI-based systems become more prominent but their impact on the safety of the system is not understood well so far.
This project studies ways of extending safety analysis and verification technology for cyber-physical systems with ways of addressing the additional challenges that AI-based CPS provide.
The PI developed a verification tool, KeYmaera, for CPS, which has had quite some success in verifying CPS. KeYmaera has been used successfully for a safety analysis of an AI-intensive CPS, the Airborne Collision Avoidance System ACAS X, albeit with non-negligible effort. For a system of such a world-wide impact as ACAS X, the effort amortizes. This project proposes to develop verification technology that reduces the effort needed to verify AI-based systems in order to achieve more widespread adoption of safety analysis for AI-based CPS.
Published by the Future of Life Institute on 1 February, 2023