Skip to content
Grant

Aligning Superintelligence With Human Interests

Amount recommended
$250,000.00
Grant program
Primary investigator
Benja Fallenstein, Machine Intelligence Research Institute
Project summary

How can we ensure that powerful AI systems of the future behave in ways that are reliably aligned with human interests?

One productive way to begin study of this AI alignment problem in advance is to build toy models of the unique safety challenges raised by such powerful AI systems and see how they behave, much as Konstantin Tsiolkovsky wrote down (in 1903) a toy model of how a multistage rocket could be launched into space. This enabled Tsiolkovsky and others to begin exploring the specific challenges of spaceflight long before such rockets were built.

Another productive way to study the AI alignment problem in advance is to seek formal foundations for the study of well-behaved powerful Ais, much as Tsiolkovsky derived the rocket equation (also in 1903) which governs the motion of rockets under ideal environmental conditions. This was a useful stepping stone toward studying the motion of rockets in actual environments.

We plan to build toy models and seek formal foundations for many aspects of the AI alignment problem. One example is that we aim to improve our toy models of a corrigible agent which avoids default rational incentives to resist its programmers’ attempts to fix errors in the AI’s goals.

Technical abstract

The Future of Life Institute’s research priorities document calls for research focused on ensuring beneficial behavior in systems that can learn from experience with human-like breadth and surpass human performance in most cognitive tasks. We aim to study several sub-problems of this ‘AI alignment problem, by illuminating the key difficulties using toy models, and by seeking formal foundations for robustly beneficial intelligent agents. In particular, we hope to (a) improve our toy models of ‘corrigible agents’ which avoid default rational incentives to resist corrective interventions from the agents’ programmers, (b) continue our preliminary efforts to put formal foundations under the study of naturalistic, embedded agents which avoid the standard agent-environment split currently used as a simplifying assumption throughout the field of AI, and (c) continue our preliminary efforts to overcome obstacles to flexible cooperation in multi-agent settings. We also hope to take initial steps in formalizing several other informal problems related to AI alignment, for example the problem of ‘ontology identification’: Given goals specified with respect to some ontology and a world model, how can the ontology of the goals be identified inside the world model?

Published by the Future of Life Institute on 1 February, 2023

Sign up for the Future of Life Institute newsletter

Join 40,000+ others receiving periodic updates on our work and cause areas.
cloudmagnifiercrossarrow-up linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram