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Abstract 

Climate change, a critical global challenge addressed by the United Nations Sustainable 

Development Goal 13 (SDG 13), is driving a significant rise in global temperatures. Since the pre-

industrial era, the Earth's average surface temperature has increased by approximately 1.1°C, with 

the past decade being the warmest on record. This warming trend, primarily caused by human 

activities such as greenhouse gas emissions, has far-reaching consequences, including the 

intensification of heat, especially in cities. Urban areas are particularly vulnerable to rising 

temperatures due to dense infrastructure, limited vegetation, and heat-retaining surfaces that 

exacerbate warming. As climate change amplifies extreme heat events, cities face growing 

challenges in maintaining livability and resilience. This study therefore provides a comprehensive 

review of Artificial Intelligence (AI) applications in urban heat mitigation and adaptation, 

analyzing 65 peer-reviewed studies published between 2014 and 2024. The findings reveal a 

significant increase in research since 2019, with most studies focusing on North America, Europe, 

and China. AI is primarily used for heatwave and UHI prediction (46%), data analysis to identify 

key heat drivers and impacts (25%), and data generation for creating new datasets (12%). Machine 

Learning (ML) techniques, particularly neural networks and decision trees are widely applied to 

analyze remote sensing and weather data for urban heat mapping and forecasting. Despite AI’s 

potential to enhance urban heat management—through decision-making frameworks and 

optimized urban layouts—several research gaps remain. Most studies prioritize heat mitigation 

(58%) over adaptation (40%), with limited focus on integrating both approaches. Additionally, 

there is a lack of research on AI applications in tropical regions and on the practical implementation 

of AI-driven strategies. These findings underscore the need for further research on translating AI-

driven insights into actionable solutions, particularly in the Global South, where rising urban 

temperatures pose increasing risks to public health and infrastructure. 
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Heat 
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Introduction 

Temperatures, Atmospheric Heat and Climate Change 

Imbalances in the Earth's energy budget due to increasing greenhouse gas emissions have resulted 

in increased temperatures. Since 1982, the overall temperatures on Earth's surface have increased 

at a rate of 0.360C per decade, with the last ten years being the warmest ten years on record. These 

increases in atmospheric temperatures and GHG emissions, primarily caused by anthropogenic 

activities, are the leading causes of climate change. In the year 2015, along with the Paris 

Agreement on climate change, the Sustainable Development Goals (SDGs) were adopted to 

address a range of global challenges including climate change and environmental degradation. 

While there are several overlaps and interconnections among these SDGs, the SDG most pertinent 

to increasing atmospheric heat is SDG 13: Climate Action. The primary objective of this SDG is 

to implement measures to address climate change by enhancing resilience and adaptive capacities, 

incorporating climate action into policies and regulations, developing competencies, facilitating 

and financing climate-change mitigation initiatives, and augmenting capacity. 

Climate change and increasing temperatures are observable phenomena in both natural and human-

modified built environments. While the impacts in natural environments primarily affect flora and 

fauna, the effects are most pronounced in built environments such as urban areas. This is primarily 

attributable to the biophysical and demographic characteristics of cities, which influence the 

magnitude of heat and the number of individuals affected by this thermal stress. As of 2024, more 

than 50% of the global population resides in urban areas, a figure projected to increase to 

approximately 70% by 2050. Urban areas worldwide are simultaneously contributing to and 

experiencing the effects of climate change, forming a self-perpetuating cycle. A recent study (Wei, 

Wu, & Chen, 2021) demonstrated that, out of 167 cities studied, 25 megacities accounted for 52% 

of the total greenhouse gas emissions through stationary energy use (buildings) and transportation. 

Urbanization, in conjunction with a changing climate, such as frequent heatwave events (Arias, 

P.A., N. Bellouin, E. Coppola, R.G. Jones, G. Krinner, J. Marotzke, V.Naik, M.D. Palmer, G.-K. 

Plattner et al., 2021; Mandal et al., 2019) exacerbates the impacts of increasing heat. This 

phenomenon of elevated temperatures in urban areas compared to rural surroundings is referred to 

as the Urban Heat Island (UHI) phenomenon. Numerous studies and existing knowledge have 

demonstrated that the predominant cause of this increased heat in urban areas is urbanization 
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factors such as increased sensible heat due to expanded impervious areas, increased infrared 

radiation due to decreased sky view factor, decreased latent heat energy due to reduced vegetation, 

and increased anthropogenic heat due to increased heat sources such as people, buildings, and 

vehicles. However, it is essential to recognize that conventional understanding of UHIs is evolving 

with the advent of new concepts such as local climate zones and urban heat archipelagoes that 

demonstrate microclimatic variations due to the built environment, leading to multiple hotspots 

and heat sinks within cities. This work therefore examines this issue of increased atmospheric heat, 

particularly in urban areas, using the Driver, Pressure, State, Impact, Response (DPSIR) 

framework, as illustrated in Figure 1. As depicted in the figure, while the primary drivers or root 

causes remain broadly consistent for various environmental impacts, the pressures differ. In the 

case of increased atmospheric heat, especially in the built environments, the biophysical 

characteristics of cities, which can be improved through human intervention, constitute the 

pressures. Therefore, this study focuses on understanding how Artificial Intelligence is specifically 

being utilized to address these pressures of urban heat by improving the state, reducing the impact, 

and enhancing the response to heat within built environments. 

 

 

Figure 1: The DPSIR framework for Urban Heat 
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Artificial Intelligence and Climate Change 

As observed in Figure 1, the majority are anthropogenic causes, impacts, and responses that can 

be analyzed and improved with human intervention. This presents an opportunity for the 

application of cutting-edge technology, specifically Artificial Intelligence, which has significant 

potential to contribute to this field. The rapid proliferation of Artificial Intelligence (AI) across 

diverse sectors necessitates a rigorous and comprehensive examination of its impact on various 

domains. AI replicates human cognitive functions by executing tasks traditionally associated with 

human intelligence, such as facial recognition and personalized recommendations based on user 

behavior (Alhafizh et al., 2023; Seshia et al., 2022). A substantial portion of AI's functionality is 

driven by Machine Learning (ML), a subset of AI that identifies patterns and relationships within 

large, complex datasets. Alongside ML, other key techniques contributing to AI advancements 

include Deep Learning (DL), Natural Language Processing (NLP), and Computer Vision. These 

technologies enable AI to process and interpret vast amounts of unstructured data, facilitating its 

application across sectors such as healthcare, finance, and urban development. 

One robust framework for understanding artificial intelligence's role in these sectors is through its 

contribution to the United Nations' Sustainable Development Goals (SDGs). A recent study 

(Vinuesa et al., 2020) revealed that AI positively impacts 134 SDG targets while potentially 

impeding progress on 59 others. The positive effects are predominantly observed in areas related 

to environmental sustainability, whereas negative impacts are noted in social and economic 

sustainability domains. Furthermore, the study highlights geographic disparities in AI research, 

which contribute to the uneven distribution of its benefits and challenges across different regions 

and sectors. 

In the domain of environmental sustainability, artificial intelligence (AI) plays a crucial role in 

various areas, including renewable energy generation (short-term, long-term, and real-time 

predictions), energy efficiency (smart grids, energy management systems), biodiversity 

monitoring (wildlife and plant health), building optimization to reduce energy consumption, and 

urban land-use monitoring to improve microclimates. These technologies also contribute to 

precision agriculture and the circular economy. Rolnick et al. (2023) comprehensively outline the 

role of machine learning (ML) in these domains, particularly in addressing climate change. The 

primary focus of these technologies is either carbon emission reduction or enhanced carbon 
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sequestration, both of which are essential to limiting global temperature rise and mitigating climate 

change. Estimates suggest that AI could reduce global greenhouse gas emissions by 4% by 2030 

(Microsoft and PWC, 2019). AI also demonstrates potential in climate change adaptation, 

including flood prediction, crop management, and disaster management (Leal Filho et al., 2022). 

The near-linear correlation between carbon emissions and global temperatures underscores the 

critical need to leverage AI for emission reduction to mitigate temperature increases. As 

temperatures continue to impact various environments—urban, rural, industrial, and natural—the 

role of AI in heat mitigation and adaptation becomes increasingly significant in the context of 

climate change. A comprehensive assessment of AI's role in these areas is crucial to harnessing its 

capabilities in addressing the complex challenges posed by climate change and aligning with the 

long-term goals of SDG 13 (Climate Action). AI's capacity to process large datasets, model 

interdependencies, predict climate impacts, and support decision-making positions it as a vital tool 

in meeting SDG targets related to climate action. 

Proposed study 

This study presents a systematic review of the literature examining AI's role in heat mitigation and 

adaptation, specifically in the context of urban areas. Using, the DPSIR framework for urban heat, 

this study analyzes the role of AI in each of those categories, and shall precisely address the 

following questions:  

1. How has research and tool development in AI-driven heat mitigation evolved over time 

and across regions? 

2. Which aspects of the DPSIR framework for urban heat are most effectively addressed by 

AI-driven solutions? 

3. How is AI most used in this area of heat mitigation and adaptation?  

4. Which sectors (e.g., urban planning, energy, transportation, agriculture) benefit the most 

from AI-driven heat mitigation strategies? 

5. What are the current gaps and limitations in AI applications for urban heat mitigation and 

adaptation? 

6. What is the future scope of AI in urban heat mitigation and adaptation, and what research 

directions should be prioritized? 
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Methodology 

This review primarily focused on peer-reviewed journal articles sourced from databases such as 

the Web of Science and Scopus. To maintain a clear focus on the role of AI in heat mitigation and 

adaptation within the broader context of climate action, only studies that directly addressed urban 

heat and outdoor microclimates were included. Research from related sectors, such as building 

management and transportation, were referenced selectively for discussion. The search strategy 

employed specific keywords and their combinations to identify relevant literature. The key search 

terms included: AI and Air Temperature Reduction, AI and Heat Adaptation, AI and Heat 

Mitigation, AI and Heat Reduction, AI and Heatwave Mitigation, AI and Urban Heat Island 

Mitigation, AI and Urban Heat Management, Heat Mitigation and AI Technologies, ML and Air 

Temperature Reduction, ML and Heat Adaptation, ML and Heat Mitigation, ML and Heat 

Reduction in Climate Change, ML and Heatwave Prediction, and ML and Urban Heat Island 

Mitigation. 

In addition to peer-reviewed articles, this review examined existing AI-based applications and 

tools for their effectiveness in mitigating heat and reducing air temperatures. While both "heat" 

and "temperature" are related concepts, heat encompasses more than temperature alone, also 

accounting for factors such as humidity (as measured by the heat index). Therefore, this study 

primarily focused on heat while considering the literature that emphasizes the direct impact on 

temperature, given that heat is more sensitive to temperature variations than relative humidity 

(Rachid & Qureshi, 2023; Simpson et al., 2023). This approach ensures that the review focuses on 

the aspects most critical for understanding the role of AI in addressing heat and temperature-related 

challenges in the context of climate change. 

Inclusion and Exclusion Criteria 

This study focused on peer-reviewed journal articles published in English within the last decade 

(2014–2024). Only the studies relevant to the research questions posed in this review were 

included. For instance, articles discussing the impact of AI on heat exchanger performance or 

applications in healthcare were excluded as they fell outside the scope of this review. The inclusion 

criteria were centered on studies that demonstrated the role of AI in addressing either heat or 

temperature-related challenges. Special emphasis was placed on heat mitigation within the 

framework of Sustainable Development Goal (SDG) 13, Climate Action. 
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In refining the article search on the Web of Science, an additional focus was placed on SDG 11: 

Sustainable Cities and Communities. Articles that did not provide substantial evidence of the 

application of AI in these areas were excluded. Furthermore, opinion pieces and editorials were 

omitted from the analysis in order to maintain the empirical focus of the review. 

After applying the inclusion and exclusion criteria, 65 studies were selected for detailed review. 

This literature review is thus specifically tailored to understand the evolution of AI research in the 

domains of “heat” and “heatwave” mitigation and adaptation, within the broader context of climate 

change and sustainability, especially in urban areas. 

Categorization of studies 

The 65 peer-reviewed journal articles were categorized into three key dimensions. 

1. Mitigation vs. Adaptation: Each study was classified based on its primary focus on either 

heat mitigation, adaptation, or both. Mitigation studies have focused on reducing heat-

related emissions or enhancing sequestration, whereas adaptation studies have addressed 

strategies for coping with rising temperature and heat. 

2. Role of AI: The studies were further categorized by the functional role of AI, as follows: 

a. Data Analysis: AI was used to process large datasets to identify patterns in heat-

related phenomena. 

b. Data Generation: AI for generating synthetic data and new datasets from existing 

data. 

c. Optimization: AI was applied to enhance energy efficiency, urban planning, or 

systems management. 

d. Decision-Making Support: AI aiding policymakers and planners with actionable 

insights. 

e. Prediction and Forecasting: AI-enabled predictive models for heat waves and urban 

heat. 

3. Impacts and Responses: Studies were also classified based on whether AI helped address 

the impacts of heat – to mitigate them, or in responding to the impacts of heat – adapting 

to the impacts. 

a. Impact of heat or heat waves: Examining the consequences of heat events. 
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b. Factors contributing to heat waves or UHIs: Exploring the causes of heat 

intensification. 

c. Prediction of heat waves or UHIs: AI models predicting future heat-related 

phenomena. 

d. Heat or heat wave management: Strategies for managing or reducing heat exposure. 

This structured classification highlights varied roles of AI in addressing heat challenges and helps 

to identify gaps for future research. 

Results and Analysis 

AI and Urban Heat Research: Spatio-temporal variations 

The collected literature was systematically analyzed to address the research questions posed in this 

study. As illustrated in Figure 2, the volume of published research in the field of AI applications 

for heat mitigation and adaptation exhibited a steady upward trend. Notably, the number of peer-

reviewed articles published before 2019 was relatively limited, indicating that this is an emerging 

area of inquiry. However, there has been a marked increase in publications since 2019, with the 

number of articles nearly doubling every two years, suggesting a growing interest in and 

recognition of potential of AI in this domain. This trend shows the nascent yet rapidly expanding 

nature of the field. 

 
Figure 2: Temporal trend of the reviewed literature  

Figure 3 illustrates the geographic distribution of the studies on AI applications for heat mitigation 

and adaptation. Similar to broader research on urban heat, China, the United States, and Australia 
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have emerged as the leading contributors to this field. By contrast, research output from the Global 

South, particularly in regions such as South America and Africa, remains limited. This disparity is 

notable given that tropical regions, which are predominantly located in the Global South, are 

among the most vulnerable to heat-related impacts. Despite their susceptibility, research activities 

in these critical areas have remained disproportionately low. 

 
Figure 3: Geographic Distribution of Reviewed Studies on AI Applications in Heat Mitigation 

and Adaptation 

Functional role of AI in Heat Mitigation and Adapation 

One of the predominant themes identified in the reviewed literature is the prediction and 

forecasting of heatwaves and urban heat islands (UHIs) through historical data and machine 

learning (ML) algorithms, including Neural Networks and Decision Trees. As illustrated in Figure 

4, 46% (30/65) of the studies are dedicated to this aspect. Integration of physics-based models with 

ML algorithms has been demonstrated to enhance both the speed and accuracy of predictions (Zhu 

et al., 2024). Additionally, 25% of the studies employ ML algorithms such as Convolutional 

Neural Networks (Vulova et al., 2021), Random Forest (Tepanosyan et al., 2021), and 

XGBoost(McCarty et al., 2021) for the analysis of remote sensing and weather data, which aids in 

decision-making processes. Furthermore, 12% (8/65) of the studies focus on utilizing AI and ML 
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for data generation, which supports the development of decision-making frameworks or the 

evaluation of urban heat mitigation strategies (Buo et al., 2023; Côté et al., 2024). A smaller 

segment, 8% (5/65) of the studies, is concerned with the creation of decision-making frameworks 

using AI, addressing various environmental and social factors to identify suitable urban heat 

mitigation strategies (Côté et al., 2024; Qi et al., 2023). Lastly, while this theme is more prominent 

in the context of built environments, there is also research focused on optimizing urban layouts to 

improve micro-climates and reduce urban heat (Lin et al., 2023). This constitutes 9% (6/65) of the 

reviewed studies.  

 

Figure 4: AI related theme across the reviewed literature 

 

AI Interventions across the DPSIR Framework for Urban Heat 

Figure 5 illustrates the distribution of studies across various thematic areas within the domain of 

urban heat mitigation and adaptation. Notably, 46% (30/65) of the studies are dedicated to 

analyzing the drivers and pressures - both natural and anthropogenic on urban heat and urban heat 

islands (UHIs). This is followed by research focused on understanding the impacts of heat waves 

and UHIs, which comprises 23% of the reviewed literature. Additionally, 16% of the studies are 

concerned with quantifying current state of urban heat and UHI magnitudes, while 15% focus on 

predicting future trends. Overall, the domain of AI applications for heat adaptation and response 

is underrepresented, particularly in urban heat management (see Figure 6). Specifically, 58% of 
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the studies pertain to urban heat mitigation, 40% to adaptation, and only 2% address both 

mitigation and adaptation comprehensively. 

 

Figure 5: Domain related themes across the review literature 

 

 

Figure 6: Studies across Heat mitigation and adaptation categories 
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AI Applications in Heat Mitigation 

AI, particularly its subset Machine Learning (ML), has increasingly been employed to understand 

heat dynamics, heatwave occurrences, and contributing factors within urban environments. Heat 

mitigation efforts aim to reduce overheating by addressing the following: 

• Minimizing heat rejection from various sources. 

• Reducing factors that contribute to heat entrapment. 

• Creating heat sinks to absorb excess heat. 

• Enhancing heat dissipation mechanisms. 

These challenges are particularly complex in urban settings due to the phenomenon of Urban Heat 

Island (UHI), where urban areas experience higher temperatures compared to their rural 

surroundings. This effect is compounded by intra-urban temperature variations, where certain 

areas overheat while others act as heat sinks, driven by differences in land use and urban 

morphology. Key factors influencing UHI formation include: 

• Increased absorption of radiation by non-pervious urban surfaces. 

• Enhanced trapping of longwave radiation (heat) within urban areas. 

• Higher sensible heat storage in urban surfaces. 

• Elevated anthropogenic heat release from human activities. 

• Reduced latent heat fraction due to decreased vegetation and lower evapotranspiration. 

• Decreased heat transfer caused by urban structures impeding wind flow. 

Notable trends in the literature highlight the application of AI for: 

• Developing Decision-Making Frameworks: AI and ML have been utilized to create 

innovative decision-making frameworks aimed to enhance the efficiency and effectiveness 

of urban heat mitigation efforts, highlighting the importance of interdisciplinary 

collaboration to ensure practical applicability across diverse urban environments. (Qi et al., 

2022, 2023). These frameworks incorporate AI techniques to automate and optimize 

decision-making processes for local governments. Essential components include: 

o Ontology-based knowledge representation: Systematically organizes UHMSs. 

o Urban context identification: Tailors strategies to specific urban settings. 

o Sensitivity Analysis: Identifies critical variables influencing heat mitigation. 
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o Genetic Algorithm-based multi-objective optimization: Balances multiple 

performance objectives. 

o Evidence-based knowledge base: Supports automated queries and informed 

decision-making. 

• Pressures of Heat Formation within an Urban Environment: Machine Learning (ML) 

techniques, including genetic algorithms and optimization methods, as well as Random 

Forest models, are effectively utilized to quantify the influence of various natural and 

anthropogenic factors on urban heat (Hou et al., 2023; Wei et al., 2023). These methods 

enhance the understanding of UHI dynamics and inform targeted mitigation strategies. 

• Reducing Heat Rejection through Buildings: Optimizing heating, ventilation, and air 

conditioning (HVAC) systems in buildings is crucial for reducing energy consumption, 

which not only improves micro-climates but also contributes to lowering global CO2 

emissions. Advances in AI have significantly impacted building design and layout 

optimization to enhance energy efficiency and micro-climate regulation (Lee & Lee, 2023; 

Zhou & Liu, 2024). 

• Reducing heat rejection through road transportation: AI-driven traffic management 

systems and optimization of electric vehicles play a key role in improving energy efficiency 

and reducing tailpipe emissions. These advancements indirectly influence urban heat by 

mitigating the heat generated from transportation activities (Kour et al., 2022). 

AI Application in Heat Adaptation 

AI is increasingly being leveraged to tackle heat adaptation challenges across diverse domains. 

Key areas of application relevant to this study include urban heat management, where the 

capabilities of AI are harnessed to enhance various aspects of heat adaptation. The utilization of 

multiple datasets and comprehensive spatial and temporal data allows for advanced heatwave 

predictions and precise mapping of heat hotspots, which in turn supports localized policy and 

decision-making processes. The primary advantages of AI in heat adaptation include: 

• Enhanced Prediction Accuracy: AI algorithms, particularly machine learning models, 

can analyze vast datasets to improve the accuracy of heatwave predictions, enabling 

proactive measures and timely interventions (Zhu et al., 2024). 
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• Localized Hotspot Mapping: By integrating and analyzing spatial and temporal data, AI 

can create detailed maps of heat hotspots, which are crucial for targeted and effective urban 

planning and policy formulation (Lee et al., 2020). 

• Optimized Resource Allocation: AI facilitates more efficient allocation of resources by 

identifying critical areas in need of intervention, thereby improving the effectiveness of 

heat adaptation strategies (Park et al., 2020). 

• Improved Decision-Making: AI-driven models and decision-support systems provide 

valuable insights and recommendations, aiding policymakers in designing and 

implementing adaptive measures tailored to specific urban contexts(Lee et al., 2020; Park 

et al., 2020). 

• Real-Time Monitoring and Response: AI technologies enable continuous monitoring of 

heat conditions and rapid response to emerging heat-related issues, enhancing the resilience 

of urban environments (Narkhede et al., 2022). 

• Integration of Multiple Data Sources: The ability of AI to synthesize and analyze diverse 

data sources—ranging from meteorological data to urban infrastructure information—

supports a comprehensive approach to managing and adapting to heat challenges. 

AI Applications in Heat Waves 

A 2023 study (Barriopedro et al., 2023), examined the application of machine learning (ML) 

techniques, particularly deep learning models, in climate science with a focus on predicting heat 

waves. The study underscores the ability of advanced ML algorithms to analyze complex, high-

dimensional climate data and uncover patterns and relationships that traditional statistical methods 

might miss. These sophisticated ML models can generate data-driven ensemble predictions by 

running multiple simulations to address uncertainties in climate forecasts. By integrating both 

historical data and real-time observations, these models enhance the precision of heat wave 

predictions and offer valuable insights into their likelihood and intensity. 

Despite these advancements, the study identifies several challenges in applying ML to climate 

science. These include the limited availability of high-quality observational data, the high 

dimensionality of climate variables, and the non-stationarity of climate systems, all of which can 

impact model performance. The authors advocate for the integration of ML with a robust physical 

understanding of climate processes to develop hybrid modeling frameworks. Such approaches are 
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expected to improve prediction accuracy and deepen the understanding of the factors driving heat 

waves. Potential applications of these ML techniques encompass refining heat wave definitions, 

identifying key drivers, developing early warning systems, and managing uncertainty in regional 

climate projections. These advancements aim to enhance climate adaptation and risk management 

strategies. 

Existing AI Tools for Heat mitigation and Adaptation 

Table 2 lists existing AI-based tools designed for heat mitigation and adaptation activities. As 

illustrated in the table, these tools represent valuable resources in the ongoing effort to manage 

and adapt to heat-related challenges. By leveraging artificial intelligence, these tools contribute to 

more effective heat management and adaptation strategies, enhancing our ability to address the 

impacts of heat through innovative technological solutions.  

Table 2: List of AI tools for heat mitigation and adaptation 

Tool Geographical 

Applicability 

Characteristics Category 

Gramener Canada Assists in heat adaptation activities by 

providing advanced data visualization and 

analytics. 

Adaptation 

Harmonia 

IRAP 

Europe Functions as a Decision Support System 

(DSS) to aid in policy-making and strategic 

planning for heat mitigation. 

Mitigation 

ARIES Global Integrated modeling and analysis for 

environmental sustainability; supports 

decision-making; leverages diverse data 

sources and AI techniques for comprehensive 

environmental insights 

Environmental 

modeling 

 

Conclusion 

This comprehensive review of AI applications in urban heat mitigation and adaptation reveals 

significant progress and potential in addressing the growing challenges of urban heat. The analysis 

of 65 peer-reviewed studies from 2014 to 2024 demonstrates a rapid increase in research since 

2019, particularly in North America, Europe, and China. AI is predominantly utilized for 

prediction and forecasting of heatwaves and urban heat islands, data analysis to identify patterns 

and drivers of heat, and data generation for decision-making frameworks. Machine learning 

techniques, especially neural networks and decision trees, are frequently employed to analyze 
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remote sensing and weather data for urban heat mapping and prediction. Most studies focus on 

heat mitigation rather than adaptation, with limited research addressing both aspects 

comprehensively. While AI shows promise in enhancing urban heat management through 

improved decision-making frameworks and urban layout optimization, several research gaps 

remain. These gaps include insufficient studies in tropical regions and limited focus on practical 

implementation of AI-driven strategies, particularly in the Global South. The findings underscore 

the need for additional research on translating AI insights into practice and addressing heat 

challenges in vulnerable regions. Future research should prioritize bridging the gap between 

theoretical advancements and practical applications, expanding studies to underrepresented areas, 

and developing integrated approaches that address both mitigation and adaptation strategies. As 

increasing heat continues to pose significant challenges worldwide, the role of AI in developing 

effective solutions becomes increasingly critical. By addressing the identified research gaps and 

leveraging AI's capabilities, cities can enhance their resilience to heat-related impacts and 

contribute to broader climate action goals. 
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