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Abstract 

In recent years, there has been a significant increase in artificial intelligence (AI) approaches 
for Sustainable Development Goals (SDGs), particularly SDG 13: Climate Action. Several AI 
technologies, such as machine learning, deep learning neural networks, and big data analytics 
present new tactics to tackle the complex problems of climate change. Via improving decision-
making, predicting future outputs, and effectively managing vast data, these technologies help 
increase the accuracy of climate forecasts, optimization of resource allocation, while enabling 
faster responses to climatic change impacts. Yet, numerous challenges remain despite these 
advances including the need for high-quality data and robust algorithms as well as addressing 
ethical concerns, such as privacy of information with reference to the environmental effects of 
AI. With the help of systematic literature review, the present study investigates emerging 
patterns and analyses the findings to identify how AI can improve climate resilience and 
support mitigation and adaptation efforts in alignment with SDG 13. It underscores the need 
for ongoing innovation, interdisciplinary cooperation, and constructive legislation. Evidence 
indicate that AI has the potential to greatly enhance climate resilience if technical and ethical 
issues are properly addressed.  

1. Introduction  

1.1. Climate change  

Climate change is one of the pressing matters of the 21st century and needs to be addressed 
with solutions for communities to be resilient to the impacts of climate change to avoid 
significant loss of life and property (Eckardt et al., 2022). The Intergovernmental Panel on 
Climate Change (IPCC) states that without significant mitigation efforts, global temperatures 
could rise between 1.5°C and 2°C by the end of this century, and it has consistently warned 
that this could lead to severe and potentially irreversible consequences (Intergovernmental 
Panel on Climate Change (IPCC, 2018; 2021). The impacts of global warming are increasingly 
evident, particularly in vulnerable regions where limited infrastructure and resources 
exacerbate the risks posed by climate-related hazards. For example, rising sea levels threaten 
the existence of small island developing states (Nurse et al., 2014, Robinson, 2018), while Sub-
Saharan Africa is increasingly vulnerable to severe droughts, such as the 2015-2016 El Niño-
induced drought in Ethiopia, which affected over 10 million people and worsened food and 
water insecurity (Mera, 2019). Similarly, as the pace of urbanization quickens in South Asia, 
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areas like Delhi and Karachi are facing extreme heatwaves that disproportionately impact the 
urban poor. The 2015 heatwave in India, which led to over 2,000 deaths (Satyanarayana et al., 
2020), highlighted the urgent need for targeted adaptation and mitigation strategies in these 
vulnerable urban areas. (Nguyen, 2024) studied the mortality rates among older people living 
in hot regions in Southern Vietnam, and found that both heatwaves and cold waves are the 
major reasons. According to the latest IPCC report (IPCC, 2023), human activities like burning 
fossil fuels, unsustainable land use, excess consumption of energy, and other factors are the 
major reasons behind global warming. The study by Liu et al. (2023) assessed future shared 
socio-economic pathways (SSPs) and concluded that the probabilistic flood risk for the city of 
Monte Carlo will increase by 51.3% under the SSP2-4.5 scenario and by 67.4% under the 
SSP5-8.5 scenario. 

1.2. Sustainable Development Goal 13: Climate Action  

Sustainable Development Goal 13 (SDG 13), established by the United Nations (UN) as part 
of the 2030 Agenda for Sustainable Development, aims to catalyse global efforts to combat 
climate change and its impacts (The Sustainable Development Goals Report, 2023). This goal 
targets the reduction of greenhouse gas (GHG) emissions, enhancement of resilience, and 
improvement of adaptive capacities to mitigate and adapt to climate-related challenges. It sets 
a key target to 'strengthen resilience and adaptive capacity to climate-related hazards and 
natural disasters in all countries' (United Nations, 2015). Beyond this, SDG 13 advocates for 
integrating climate concerns into national development policies and developing financial 
mechanisms to support these objectives. Furthermore, three of its four targets—13.1, 13.2, and 
13.b—emphasize raising awareness and building capacity (Box 1), which are crucial for 
fostering a resilient and adaptive global response to climate change (Sami Neha et al., 2017).  

13.1 Strengthen resilience and adaptive capacity to climate-related hazards and natural 
disasters in all countries. 
13.2 Integrate climate change measures into national policies, strategies, and planning.  
13.3 Improve education, awareness-raising, and human and institutional capacity on 
climate change mitigation, adaptation, impact reduction, and early warning.  
13.a Implement the commitment undertaken by developed-country parties to the United 
Nations Framework Convention on Climate Change to a goal of mobilizing jointly $100 
billion annually by 2020 from all sources to address the needs of developing countries in 
the context of meaningful mitigation actions and transparency on implementation and fully 
operationalize the Green Climate Fund through its capitalization as soon as possible. 
13.b Promote mechanisms for raising capacity for effective climate change-related 
planning and management in least developed countries and small island developing states, 
including focusing on women, youth, and local and marginalized communities. 
Acknowledging that the United Nations Framework Convention on Climate Change is the 
primary international, intergovernmental forum for negotiating the global response to 
climate change. (UN Sustainable Development) 

Box 1. Objectives as per SDG 13 
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1.3. Artificial Intelligence  

The concept of artificial intelligence (AI) indicates the ability of machines to learn from 
experience, adjust to new inputs, and perform human-like tasks to interpret external data 
correctly to achieve specific goals and tasks through flexible adaptation (Filho, 2019). This 
field has gained broader attention with significant advances in data collection and aggregation, 
analytics, and the availability of suitable computer processing power (Singh et al., 2023). In 
2015, the AI market was worth $200 million. It is estimated that by 2025, it will amount to 
nearly $90 billion (UNEP, 2019). 
 
Recent AI methods represent cutting‐edge advancements in the climate change field, 
characterized by the rise of machine learning (ML), deep learning (DL), and neural network 
(NN) architectures (Figure 1). ML can be regarded as a sophisticated statistical analysis tool 
and is used for making predictions based on the information that the user has. There are two 
types of ML methods: ‘supervised learning’ and ‘unsupervised learning’. In supervised 
learning, the aim is to get predictions for new data, whereas, in unsupervised learning, new 
insights and trends can be interpreted using large volumes of data (Delua, 2021). Neural 
networks are made up of node layers: input layer, hidden layers (one or more), and output layer. 
A study by Moghanlo et al. (2021) showed that an Artificial Neural Network (ANN) can be 
used to understand the effects of climate change on the dust phenomenon until 2050 for Zanjan 
city.  

 

Figure 1. An overview of Artificial Intelligence 

Other emerging AI technologies, such as transfer learning, which leverage pre-trained models 
to enhance performance with limited data (Hassan et al., 2022), and quantum computing, with 
potential applications in various fields (Singh, et al., 2024), are part of the broader shift toward 
data-driven approaches that solve complex problems across diverse domains (Liyu 2024). 
These methods have propelled AI into new frontiers, enabling systems to learn from data, 
recognize patterns, and make predictions with remarkable accuracy. 



  
 

4 
 

 

1.4. Integrating artificial intelligence and climate resilience  

Addressing climate change impairment with the help of AI presents a possibility of benefiting 
SDG 13, and this is why it is important to ensure its broad-based adoption into local plans. 
These days, AI technologies have been utilized in climate resilience for impact management 
by predicting floods, droughts, melting of icebergs, and developing strategies for adaptation 
and mitigation accordingly. For example, the Deep Thunder project by IBM provides weather 
forecasts with extremely high resolution (Jain, 2023), and a flood prediction system based on 
AI from Google issues warnings in time for flooding regions such as Accra, Ghana (Afra et al., 
2022; Nearing, 2024). As per a study, AI has the potential to reduce energy consumption in 
buildings by 30-50% (Chen et al., 2023).  

Deep learning, which is a subset of machine learning, has developed into a dominant 
technology for addressing climate-related challenges by providing powerful methods for 
identifying vulnerabilities, reducing risks, and enhancing resilience among communities and 
businesses (Akter et al., 2023; Singh, 2024). Convolutional Neural Networks (CNNs) can 
classify, recognize, and predict trends in climate change and environmental data (Gentine et 
al., 2018; Kareem et al., 2021). Additionally, Recurrent Neural Networks (RNNs) offer a more 
sophisticated approach to modelling complex relationships in time-series data, which is crucial 
for understanding long-term climate trends and variability (Han, 2021). Artificial Neural 
Network (ANN), Nearest Neighbours Classification (NNC), and Support Vector Machine 
(SVM), are some other methods to predict and classify flash floods in arid regions to make the 
communities resilient to climate change (Nakhaei et al., 2023). Future advancements, such as 
AI’s integration with Internet of Things (IoT) and blockchain, could enhance real-time data 
processing, improving climate-resilient strategies (Rolnick et al., 2022; Vinuesa et al., 2020).  

The integration of AI technologies in potential areas to achieve climate resilience is shown in 
Figure 2. The application of AI technologies like machine learning (ML), deep learning (DL), 
neural networks and natural language processing (NLP) in climate research areas including 
weather and climate, renewable energy and grid management, carbon capture and storage, 
agriculture and policy and finance can help achieve climate resilience and climate action goals 
such as adaptation goals (climate disaster risk reduction, improved forecasts), effective 
mitigation measures (reduced GHG emissions, smart grid management, precision agriculture) 
and improved policy and finance integration.  
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Figure 2. Integration of AI to achieve climate resilience  

2. Methodology  

A systematic approach was employed to gather and analyse relevant literature on AI in climate 
resilience, focusing on climate mitigation, adaptation, and SDG 13. The methodology involved 
identifying, selecting, and synthesizing key research papers to meet the study’s objectives and 
outcomes. Scopus was the main database used for searching the research studies, however 
relevant studies were also extracted from Web of Science, Google Scholar databases, and other 
relevant sources, with search terms such as “Artificial Intelligence,” “Machine Learning,” 
“Deep Learning,” “Climate Change Mitigation,” “Climate Adaptation,” “Climate Resilience,” 
Climate action, Sustainable Development Goals 13 and “SDG 13.” The search yielded 
numerous articles, which were subjected to inclusion criteria, encompassing peer-reviewed 
articles published in English between 2014-2024, focusing on AI in climate resilience, 
mitigation, adaptation, and targeting SDG13. Exclusion criteria ruled out studies, not directly 
addressing AI in the context of climate change, mitigation, and adaptation with a special focus 
on SDG13 targets. Key information was extracted after identifying and selecting relevant 
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articles, including the authors, publication year, research methods, and primary findings. This 
data was synthesized to generate insights into trends, patterns, and implications within the field. 
The quality of each study was evaluated based on its methodology, relevancy, and contributions 
to understanding AI and the climate resilience domain. The study particularly focused on and 
attempted to answer the following research questions (RQs): 

RQ1: How is AI currently being applied to enhance climate resilience?  

RQ2: What impact does AI have on achieving the targets of SDG 13?  

RQ3: What are the key challenges and limitations in deploying AI for climate resilience?  

To find out the answer to the above questions, documents such as research papers, reports, 
websites content on AI intervention related to climate action have been explored and analyzed 
using bibliometric and content analysis technique. In addition, we conducted interviews with 
some of the experts working in AI and climate change domain. The views of these experts were 
instrumental in complementing the findings of this study.  

2.1 Publication trend and analysis  
Temporal patterns in AI research for climate resilience  
As per the studies (n=625) extracted mainly from the Scopus database, AI inclusion in SDG 13 
has gained momentum only in the last decade. Figure 3 reflects a growing trend from 2015 
(post adoption of the SDGs by UN in 2015), with a particularly sharp increase starting in 2021 
and peaking in 2024. This suggests a substantial rise in interest, and research activity in the 
field over the past few years distribution of the studies’ publication years, spanning from 2014 
to 2024.  

 

 
Figure 3. Growth of research and publication related to AI and climate resilience  
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Top contributors to AI research for climate resilience 
Among the top countries which are actively publishing on AI for climate resilience include the 
United States, China, India, Germany, and the United Kingdom (Figure 4) which have shown 
significant global engagement in producing documents on related areas. The United States is 
leading the way with (n=132) documents. China and India follow closely, with n=106 and n=86 
documents, respectively, thereby underscoring their significant role in global research and 
policymaking, particularly in AI technology and climate action. European nations, such as 
Germany and the United Kingdom also show strong contributions, with 73 and 63 documents, 
reflecting their established research capacities and active participation in international 
discussions. Other countries like Italy, Australia, Canada, the Netherlands, and Sweden, also 
contribute substantial documents and demonstrate meaningful involvement, thereby suggesting 
a broad global interest. The diversity in document production across these countries indicates 
not only leadership from the major players but also the potential for international collaboration, 
especially in advancing global priorities such as sustainability and technological innovation. 
This distribution of document production emphasizes the varied yet interconnected roles 
various nations can play in shaping the global discourse and policies in these critical areas.  

 

 

Figure 4. Region-wise publications and collaborations between different countries on AI for 
climate resilience 
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Prominent concepts from the publications 
The publication statistics also reveal that the topics of climate change, machine learning, 
artificial intelligence, deep learning, forecasting, mitigation, climate modelling, and sustainable 
development are much-researched areas as far as the last decade is concerned. The bibliometric 
and content analysis was done using VOSviewer version 1.6.20. The co-occurrence keyword 
threshold was taken as 15 as shown in Figure 5. 

 

 

 
 

Figure 5. Keyword analysis displaying network visualization using VOSviewer 

3. Application of AI for Climate Action  

The UN-led AI Advisory Body represents a pivotal moment in the global effort to harness AI 
for addressing environmental challenges, underscoring the growing recognition of AI's 
potential in this field (UN, 2023). AI is transforming climate action by providing advanced 
tools that boost mitigation and adaptation efforts by analysing complex datasets, simulating 
future scenarios, and offering actionable insights to policymakers and practitioners (Bengio et 
al., 2021). A report by Boston Consulting Group (BCG) mentions the importance of AI in the 
reduction of emissions and the effects of greenhouse gases (GHGs) (Maher et al., 2022) , and 
analyses that GHG emissions can be reduced by 2.6–5.3 gigatons of carbon dioxide equivalent 
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(CO2e) using AI (Degot et al., 2021). AI is already making a considerable impact across the 
key areas of climate action, including natural disaster response, climate modelling, climate-
smart agriculture, energy efficiency, etc., while demonstrating its critical role in tackling the 
multifaceted challenges of climate change.  

3.1. AI in weather and climate modelling  

Traditional climate models rely on complex equations and significant computational power to 
simulate future climate scenarios (Porwal et al., 2024). This takes a lot of time and energy and 
seems relatively inefficient in the present-day scenario, where AL/ML methodologies are 
efficient at analysing future scenarios and have been employed to enhance the accuracy and 
efficiency of traditional climate models. For instance, Reichstein et al. (2019) highlight the 
potential of AI to improve Earth system models by learning from vast amounts of data, enabling 
better predictions of climate variability and change, while ensuring consumption of 
significantly less energy. In managing extreme weather events, AI systems analyse 
meteorological data to predict the path and impact of hurricanes, floods, and wildfires, thereby 
enabling better emergency preparedness and response (Scher et al., 2019; Varshney, 2019). For 
instance, deep learning models have been employed to improve the fine-scale prediction of 
climate change by leveraging techniques like super-resolution mapping and recurrent neural 
networks (RNNs) to refine spatial dependencies and temporal dynamics (Deep & Verma, 2024). 
Additionally, the emergence of AI foundation models, which draw from advances in 
transformer models and physics-informed machine learning, are poised to generalize across 
multiple climate modelling tasks, improving accuracy in predictions for phenomena, such as 
hurricanes and atmospheric rivers (Mukkavilli et al., 2023). However, the rapid adoption of AI 
also introduces new vulnerabilities, including the risk of adversarial attacks that could distort 
climate projections, necessitating robust defences and ethical considerations (Calengor et al., 
2024). AI also plays a crucial role in climate intervention analysis, such as optimizing 
techniques like Marine Cloud Brightening to meet regional climate targets while preventing 
tipping points, underscoring AI's potential in large-scale environmental management (Kramea 
et al., 2023). As AI continues to evolve, its applications in climate science will likely expand, 
offering new pathways for climate prediction and intervention. 

A US-based non-profit AI research company called Ai2 believes that ML and modern 
programming languages can improve climate models and could provide projections of local 
trends of average and extreme weather events like heatwaves and extreme precipitation 
(Climate Modeling., 2024. In another study (Agrawal et al., 2019) used a machine learning 
method called U-Nets, which is a type of convolutional neural network (CNN), for precipitation 
nowcasting (short-term high-resolution predictions) from radar images and concluded that the 
ML approach can outperform the traditional numerical methods. The CNN model is a better 
alternative to dynamical forecast systems for predicting the detailed zonal distribution of sea 
surface temperatures (Ham et al., 2019). Thus, El Niño Southern Oscillation (ENSO) events 
can be better predicted which can further help prepare for extreme events across various regions. 
According to a report by the Met Office (Artificial Intelligence for Numerical Weather 
Prediction, 2022), AI is the way forward for efficient weather prediction. ML weather models 
like Pangu-Weather (Bi et al., 2022), GraphCast (Lam et al., 2022), and FourCastNet (Pathak 
et al., 2022) have advanced in forecasting weather conditions. It was also mentioned in their 
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reports that ML models are more efficient and less expensive as compared to physics-based 
simulators. 

GraphCast is an emerging machine-learning weather prediction model developed by Google 
DeepMind, which is more efficient than traditional weather prediction methods. It can be re-
trained with recent data which will enable to capture of weather patterns (Lam et al., 2023), 
thereby improving the overall performance of GraphCast. Pangu-Weather is a deep learning-
based model developed by Huawei that exhibits better short- to medium-range forecasts and 
extreme weather forecasts, such as tracking of tropical cyclones. The study by Bi et al. (2022) 
predicted typhoons (occurred previously) using the Pangu-Weatherm model. They compared 
the results with ECMWF-HRES and concluded that Pangu-Weather exhibited a much higher 
deterministic forecast with better accuracy (Figure 6). Fourier Forecasting Neural Network, 
also known as FourCastNet, is a deep-learning weather forecasting model that helps in short- 
to medium-range weather forecasting. It can generate a week-long prediction in seconds. 
Pathak et al., (2022) concluded that FourCastNet model was able to forecast hurricanes in the 
Atlantic Ocean and make landfall on the eastern coast of North America. They also stated that 
FourCastNet is about 45000 times more efficient than a traditional numerical weather 
prediction (NWP) model, making it a better choice for ensemble forecasting. The report 
concluded that the FourCastNet model was able to forecast the hurricanes in the Atlantic Ocean 
and make landfall in the eastern coast of North America. They also stated that FourCastNet is 
about 45,000 times more efficient than a traditional numerical weather prediction (NWP) 
model, making it a better choice for ensemble forecasting (Pathak et al., 2022). 

 

Figure 6. Forecast for Typhoon Kong-rey (30-09-2018) at 00UTC by Pangu-Weather model 
(red), ECMWF HRES model (blue) and the actual track (black) (Bi et al., 2022) 

NASA and IBM have collaborated and come up with a new AI foundation model for weather 
and climate called ‘Prithvi-weather-climate’ which will be available later in 2024. The model 
is pre-trained using 40 years of weather and climate data from NASA’s Modern-Era 
Retrospective analysis for Research and Applications (MERRA-2) (Blumenfeld, 2024). This 
can improve the resolution and analyse regional and local weather and climate conditions.  
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3.2. AI in early warning systems  

Early warning systems (EWS) are crucial for building climate resilience, particularly in 
vulnerable regions. AI-powered systems can analyse meteorological data in real-time to predict 
extreme weather events, such as hurricanes, floods, and droughts. For example, Lavers et al. 
(2020) demonstrated the use of AI in improving flood forecasting accuracy by integrating 
machine learning models with hydrological data. These AI-driven early warning systems can 
warn local communities about imminent disasters, thereby reducing the adverse effects of 
climate-related disasters. For instance, in Mozambique, the biosphere reserves use AI to predict 
and analyse flooding trends (UNFCCC, 2023). AI methods like Gradient Boost (GB) classifier 
selects the best features for predicting floods, and the random forest (RF) method is efficient 
in validating the onset of floods (Torky et al., 2023). Le Jian et al. (2023) in their study 
predicted emergency department attendances (EDAs) using risk factors, such as air pollutants, 
heatwaves, landscape fires, and socioeconomic status (SES) with the help of machine learning 
methods like random forest (RF), decision tree (DT), and geographical random forest (GRF). 
The study by Youssef et al. (2023) found that the RF model was most accurate in predicting 
floods in the Hasher-Fayfa Basin, Saudi Arabia. The Support Vector Machine (SVM) 
algorithm captures spatiotemporal characteristics to predict droughts in Pakistan (Khan et al., 
2020) better than the k-Nearest Neighbour (KNN). Zhang et al. (2022) analysed flash droughts 
in China using ML techniques, namely, multiple linear regression (MLR), long short-term 
memory, (LSTM) and random forest (RF), and concluded that these ML methods showed 
valuable insights about flash droughts and monitoring. 

3.3. Renewable energy forecasting and smart grid management  

 

 
 

Figure 7. Representation of how renewable energy forecasting and smart grid management 
can help achieve climate action goals 
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AI applications in renewable energy forecasting and smart grid management are crucial to 
achieve energy efficiency and improving system reliability (Figure 7). Renewable energy is 
considered as a cleaner alternative to fossil fuels and can increase the capacity of the electric 
energy systems (Wang et al., 2019). Prediction of renewable energy like solar and wind is very 
important for grid-effective energy management. ML and DL algorithms like regression 
models, neural networks, and SVM are efficient in understanding long-term patterns and 
relationships among variables. Spatial forecasting for renewable energy can be done for 
multiple locations and temporal forecasting can forecast renewable energy over various periods. 
Choosing a potential site for installing RE plants is crucial for efficient production of electricity 
and other forms of energy on the grids. Some AI methods can help with the tilt angles of solar 
panels to trace the movement of the sun for efficient use of solar energy (Ukoba et al, 2024). 
A report by REN21 (2020) stated that global GHG emissions in 2019 were stabilized where 
energy efficiency along with renewables was the main contributor. The Infosys report by Dash 
(2024) also stated that in Germany, an ML-based early warning system is used to take real-
time data from wind turbines and solar panels to predict the energy that will be generated in 
the following 2 days. Rockwell Automation developed an AI-based system for a battery 
manufacturer to identify the solar panels causing massive losses and further notify users of 
maintenance requirements. This also helps in real-time energy data monitoring. They have 
achieved about 35% increased uptime for solar operations and reduced manpower service by 
50% (Rockwell Automation, 2023).  

Integrating renewable energy into power grids can promote the use of clean energy. Moreover, 
the application of AI in grids can help achieve smart grid management (Integrating Renewable 
Energy Sources into Grids | McKinsey). Figure 7 shows how integrating renewable energy and 
grid management can help achieve climate action. The major benefit of smart grids is that one 
can save a great deal on electricity as it can help manage electricity use and allow choosing the 
best times to buy electricity. Consider a scenario where the solar farm can generate excess 
energy. The surplus energy can be distributed into a smart grid, which can be used during 
increased demand. This can be a solution for energy shortage in the future. This contributes to 
energy grids becoming more energy efficient and reducing the emissions of GHGs. Further, 
installing smart meters at homes can collect and analyze the energy consumption data (Yussuf 
et al., 2024). Rockwell Automation has implemented a real-time energy monitoring and 
alerting system for tracking energy losses occurring within the global textile and carpet 
manufacturing plants. They have saved about 4.5% on the annual energy bill and reduced 12% 
on energy due to inefficiencies in the equipment. They have successfully implemented energy 
forecasting and managing workflow by creating alerts and notifications when abnormalities are 
detected (Rockwell Automation, 2023). 
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Figure 8. Representation of how smart predictive maintenance can help achieve climate 
action goals 

AI has significant application in predictive maintenance which helps detect failures and faults 
even before they occur. Figure 8 shows how predictive maintenance can help achieve climate 
action. For instance, the faults and failures can be predicted by using ‘fault detection’. AI can 
reduce downtime and maximize energy output, ensuring optimal performance and longevity of 
the renewable infrastructure. Moreover, AI can aid in limitations related to manual inspection 
which involves risk of life for the inspectors (Chen et al., 2023).  

Further, incorporating AI in predictive maintenance for solar and wind turbines helps in the 
effective utilization of renewable energy, thereby increasing demand for installation, which can 
significantly help achieve a reduction in carbon footprint. Amazon Web Services (AWS) has 
designed a tool called ‘Amazon Monitron’ which specializes in predictive maintenance with 
the help of machine learning. This tool has the advantage of easy monitoring of any industrial 
equipment in minutes and can detect faults in rotating systems like exhaust fans, pumps, motors, 
and others. The trends can be detected through an application on the phone by technicians 
(Amazon Web Services [AWS], 2024). The operational efficiency in Baxter improved 
significantly as they saved about 500 machine hours of downtime using Amazon Monitron 
(AWS case study, 2024). Further, in the oil and gas industry, the model can assess the drilling 
equipment to reduce environmental hazards and ensure safety of the workers (Canda, 2024). 
Therefore, with the application of machine learning in predictive maintenance, the lifespan of 
the equipment will increase, which will further reduce wastage, prevent degradation of the 
environment, and contribute to climate action goal. 

3.4. Carbon sequestration and storage  

Carbon is one of the dangerous GHGs that gets released into the environment especially due to 
unchecked human activities. Capturing carbon from the atmosphere is an initiative to combat 
climate change (Priya et al., 2023) and to achieve net-zero target. The study also emphasized 
the fact that the ML methods can effectively help capture carbon dioxide (CO2). A study by 
the School of Chemistry and Chemical Engineering at the University of Surrey concluded that 
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the carbon capture systems were able to capture 16.7% more CO2 by using 36.3% less energy 
from UK’s national grid with the use of AI and ML algorithms (Fisher et al., 2024). AI-enabled 
carbon capture in mitigating climate change helps achieve climate action targets (SDG 13) by 
optimizing real-time capturing of CO2 (Priya et al., 2023).  

Rockwell Automation provides a product called ‘carbon footprint monitoring’ and reporting to 
achieve the net-zero target. This helps track emissions and gives an idea of areas that need 
reduction. Further, it improves sustainability performance and provides financial benefits. They 
have managed to achieve a 50% reduction in comparison to manual monitoring. (Rockwell 
Automation, 2024). A London-based company called Mortar IO focuses on decarbonizing 
buildings using AI to digitize and plan carbon reduction for buildings with immediate effect 
(Google blogs, 2023). Moreover, adopting AI can reduce carbon emissions by 8% to 19% by 
2050 (Ding et al., 2024). 

Energy efficiency translates to reducing energy costs and emission footprint. The goal of 
energy efficiency is to provide similar or enhanced services using less energy. This energy 
resource can help us achieve decarbonization and net-zero targets (Energy Efficiency | 
Understand Energy Learning Hub, n.d.). A study by Merabet et al. (2021) stated that the 
application of AI techniques in Heating, Ventilation, and Air-Conditioning (HVAC) 
installations has saved energy on an average between 21.81% and 44.36% and improved 
comfort between 21.67% and 85.77%. In this study, the application of AI has been discussed 
in achieving energy efficiency through renewable energy forecasting, smart grid management, 
predictive maintenance, and carbon capture and storage. 

3.5. Precision agriculture  

 

 

Figure 9. AI powered Precision Agriculture 
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AI adoption in farming is on the rise, with Statista predicting that the global AI agriculture 
market will expand to $2.6 billion by 2025. AI in agriculture enhances resource efficiency, 
thereby reducing the environmental footprint of farming activities through areas like pest and 
disease detection, precision water, and soil management, crop classification and carbon 
sequestration as given in Figure 9. Raji E (2024) in his study highlights the role of data-driven 
decision-making in enhancing agriculture practices with the help of remote sensing, IoT 
sensors, historical records, climate data, and crop performance metrics.  

According to the Food and Agriculture Organization (FAO), precision agriculture technologies, 
including AI, have the potential to increase global crop yields by up to 20%. AI-driven 
precision agriculture has been shown to reduce water usage by up to 30% while increasing crop 
yields by 10-15% (Penubelli, 2024). Similarly, AI-guided precision sowing improves crop 
emergence rates by 15% (Avalekar & Patil, 2024) and boosts agricultural productivity by 12% 
(Javaid, 2024), optimizing land use and reducing the pressure to convert natural habitats into 
farmland. 

Moreover, AI's role in herbicide application has led to more targeted and efficient use of 
chemicals, significantly reducing their environmental impact. Technologies like See & 
Spray™, which use computer vision and machine learning to target weeds, can reduce 
herbicide usage by up to 77% (Mississippi State University Extension, 2022). This not only 
minimizes soil and water contamination but also lowers GHG emissions from chemical 
production and application.  

Studies highlighted that disease classification from images can be done using Convolutional 
Neural Network (CNN) architectures for different plants with different diseases (Mohanty et 
al., 2016); with image recognition technique (Automated AI integrated vehicles and robots) 
weed and pest from crops can be located and destroyed (Garske, Bau, & Ekardt, 2021) ; 
relationships between weather data and pest occurrence can be retrieved using long short-term 
memory (LSTM) networks for forecasting future pest attacks (Xiao et al., 2019; Domingues et 
al., 2022). In the realm of disease management, hyperspectral imaging and 3D laser scanning—
AI-powered technologies—collect precise data on crop health, enabling better monitoring and 
decision-making. These tools, along with biosensors that monitor soil moisture and fertility, 
enhance the efficiency of resource usage and reduce the environmental impact of farming 
operations (Javed et al., 2023). 

As per a study by Márquez (2024), the use of artificial intelligence (AI) to guide herbicide 
application led to a 40 % decrease in the amount of weed biomass can be achieved by AI use 
AI in comparison to traditional method of human spraying (Padhiary 2024) 

AI-driven innovations in agriculture not only optimize resource use but also enhance resilience 
to climate change. By enabling early detection of pests and diseases, optimizing irrigation, and 
improving overall farm management, AI supports more sustainable agricultural practices that 
align with SDG 13 targets. While AI in agriculture is still in its early stages and faces challenges 
like the need for extensive training data, its potential to transform agriculture into a more 
adaptive and sustainable industry is undeniable. 
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3.6. Climate finance and policies integration 

As per a study, despite the Paris Agreement’s goal of $100 billion annually in climate finance, 
public contributions in 2019 reached only $65.5 billion (Toetzke, 2022), highlighting a funding 
gap. AI can play a pivotal role in addressing this gap by enhancing predictive analytics, 
optimizing investments, and improving climate risk assessments, thereby making climate 
finance more efficient (Zhao, 2024). 

AI and machine learning applications streamline investment decisions by improving carbon 
price forecasts, optimizing energy costs, and enhancing data-driven strategies for mitigation 
and adaptation (Akter, 2024). These technologies have redirected billions toward sustainable 
projects. For example, a Bidirectional Encoder Representations from Transformers (BERT)-
based model fine-tuned with climate data achieved 90% accuracy, showcasing AI’s potential 
for societal impact (Toetzke et al., 2022). Platforms like BlackRock's Aladdin Climate leverage 
AI to assess climate risks and opportunities in investment portfolios, guiding capital toward 
resilient, low-carbon initiatives (Elias, 2024). 

AI not only enhances climate risk assessments but also prioritizes green investments over 
carbon-intensive assets, driving sustainable financial returns and uncovering high-potential, 
underfunded areas for investment. By leveraging AI for risk assessment and optimizing 
investments, governments and organizations can create more effective green financial 
instruments and adaptive policies and can ensure transparent, efficient allocation of funds, 
support the enforcement of climate regulations, and accelerate the transition to a sustainable, 
low-carbon economy. 
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Table-1: Framework for AI-Enhanced Climate Resilience: Aligning Technological Innovation with SDG 13 Goals 

 Area  Technologies 
listed  

AI/ML 
methods  

Existing Studies  Overall impact  SDG 13 
Target  

Weather, 
Climate and 
Early 
Warning 
Systems  

Pangu-
Weather,  
FourCastNet,  
GraphCast,  
Google’s AI-
driven flood 
prediction 
system,  
  

Deep neural 
networks,  
Long Short-
Term Memory 
networks 
(LSTMs),  
Convolutional 
Neural 
Network 
(CNN)  

1. LSTM showed higher skills at 
predicting floods as compared to the 
linear model (Nevo et al., 2022).  
 
2. Deep learning methods used in 
weather forecasting methods are 
relatively more efficient than numerical 
models (Pathak et al., 2022, Bi et al, 
2022, Lam et al, 2023)  
  

Over 100000000 flood alerts were sent to flood 
affected areas in India and Bangladesh’s disaster 
reliefs.  
 
Accurate weather forecasts can be made in 
relatively less time.  
  
Helps in early warning and timely dissemination 
of disaster relief to reduce loss of life.   

Target 
13.1  

Agriculture  See & 
Spray™, 
(Blue River 
technology, 
Climate-
Smart 
Agriculture 
(CSA)  

  

Internet of 
Things (IoT) 
and 
blockchain  

  

1. Blue river technology is the new 
approach to precision agriculture. It 
detects unwanted weed through 
computer vision and artificial 
intelligence and spraying the herbicide 
through robotic nozzles.  

 2. IoT can help monitor agricultural 
fields and can be tracked on smart 
devices (Ahmed et al., 2022).  

Reduce herbicide usage by up to 77%  
  
Provide better control and management in 
supply-chain networks which can reduce wastage 
and channel supply to scarce regions  

Target 
13.2  
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Energy  Amazon 
Monitron,  
AI-enabled 
carbon 
capture and 
storage 
(CSS), Smart 
grids  
  

Deep Belief 
Network,  
Stack Auto-
Encoder,  
Recurrent 
Neural 
Network 
(RNN)  
  

1. With the integration of AI and ML 
methods, carbon capture systems can 
capture relatively more CO2 by using 
less energy form UK’s national grid 
(Fisher et al., 2024). 
  
2. Integration of ML techniques in 
HVAC systems can save energy 
between 21.81 and 44.36% (Halhoul 
Merabet et al., 2021) 
  
3. Electricity demand can be predicted 
by analyzing temperature trends (De 
Felice et al., 2015).  
  
  

Alerts faults and failures in machinery and 
reduces unplanned equipment downtime with 
predictive maintenance. This helps in reducing 
GHG emissions.  
  
Carbon capture has become more efficient with 
the integration of AI and ML.  
  
There is a significant saving of energy in HVAC 
systems which helps in reducing GHG 
emissions.  
  
Efficient use of renewable energy can help in 
reducing GHG emissions.  
  
AI has the potential to reduce energy 
consumption in buildings by 30-50%.  
  
AI can help reduce carbon emissions by 8-19% 
by the year 2050.  

Target 
13.2  

Climate 
Finance  

  Large 
Language 
Model (LLM), 
Natural 
Language 

1. Monitoring climate technologies is 
very crucial and can be regarded as the 
central idea to achieving net-zero 
emissions as well as in policy making 
(Toetzke et al., 2023).  

Stakeholders can engage with data and explore 
various policy scenarios effectively.  
  
Enhancing decision-making in the public sector 
including environmental policy and climate 

Target 
13.2, 
Target 13.a 
and Target 
13.3  
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Processing 
(NLP)  
  

 
2. Exploration of scientific texts can be 
efficiently done with the help of NLP. 
This would provide deeper insights for 
policymakers, environmentalists and 
engineers (Mallick et al., 2024).  

change.  
  

Enhanced predictive analytics and optimized 
investments make climate finance more 
efficient.  

Capacity 
Building  

  

Chatbots, 
Virtual 
assistants.  

  

  1. AI can provide opportunities to 
perform efficient data analysis (Altinay 
et al., 2024).  
  
2. For effective use of climate 
intervention technologies, capacity 
building is required (Dove et al., 2024)
.  

Enhanced capacity of AI-based research in 
environmental institutions.  
  
Community level capacity building in 
developing countries.  
  

Target 13.3 
and Target 
13.b  
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The above framework (Table 1) illustrates the significant role AI technologies play in 
enhancing climate resilience, particularly in alignment with SDG 13 (Climate Action). The 
table categorizes AI's impact across various sectors, providing metrics and examples to 
demonstrate how AI improves climate predictions, reduces greenhouse gas emissions, 
enhances disaster response times, supports policy integration and more.  

4. Challenges and Ethical Considerations  

The inclusion of artificial intelligence and machine learning has brought transformative change 
(Mishra, 2023) but it also faces significant challenges across technical, social, ethical, and 
governance areas. Given below are some of the key challenges for consideration: 

Interoperability of AI models is one of the main challenges and function as "black boxes," 
making it difficult for stakeholders to trust and fully understand the decision-making processes 
behind AI-driven climate solutions (Linardatos et al., 2020). Additionally, integrating AI into 
climate policy remains problematic, as policymakers could struggle to interpret complex 
models, leading to a gap between technological advancements and regulatory frameworks 
(Dwivedi et al., 2021).  

One significant ethical worry is that AI could reinforce and widen biases that already exist. For 
instance, AI models trained on historical data may reinforce discrimination, neglecting certain 
communities or types of infrastructure (Brendel et al., 2021). To prevent this, it is important to 
carefully select and pre-process data, as well as monitor AI outputs for biases or errors.  

Moreover, AI-powered climate adaptation strategies may unintentionally harm vulnerable 
communities, such as through gentrification or displacement. Engaging these communities in 
the development and implementation of such strategies is vital to ensure that their concerns and 
needs are addressed (Bartmann, 2022).). 

Further, the computational demands of AI-based systems require large amounts of energy for 
data processing and cooling data centres, contributing significantly to global energy 
consumption. Studies show that training complex algorithms can produce substantial carbon 
emissions, and by 2030, computing could account for up to 8% of the world's energy demand 
(Hao, 2020; IEA, 2022; Bacchi, 2020). This raises concerns about the environmental impact 
and reliance on fossil fuels. (Chaudhary, 2023) 

On the downside, AI's application in industries such as oil and gas has facilitated the 
optimization of fossil fuel extraction, which is in direct conflict with efforts to reduce GHG 
emissions and achieve climate targets (Kaack et al., 2022). Moreover, major technology 
companies, including Google and Microsoft, have faced criticism for their partnerships with 
fossil fuel industries, raising questions on corporate accountability in AI’s role in climate action 
(Greenpeace Reports, 2020). 
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High cost of the technology also hampers the process of AI integration in Climate research 
areas. For example, renewable energy sources can be excellent alternatives to fossil fuels, but 
they can be expensive to install as compared to regular energy sources and generators 
(Thoubboron, 2022). 

Another significant impediment towards using AI-enabled CHG emissions data might be the 
Sovereignty concerns. There might be objections to foreign monitoring by some countries for 
analysis of emissions within their respective sovereign territories. Independent verification of 
international consensus and global GHG emissions data regarding accuracy of AI-enabled 
analyses would be required in realizing the potential of AI tools’ benefits in monitoring GHG 
emissions. (Sandalow, 2023) 

Lack of community focused intervention is another concern which needs to be addressed 
urgently. A study by WRI revealed that out of 374 community focused interventions, only 
around 6% incorporated local-led components, which is a very small proportion (Wright, 2023).  

Lack of technical infrastructure and expertise in certain regions is another challenge which 
might further intensify inequalities in the global implementation of AI for climate resilience. 

To address these challenges and disadvantages, ongoing adaptation of AI models is crucial to 
ensure they remain relevant in the face of evolving climate dynamics. Ethical considerations, 
including data privacy, transparency, and fairness, must be integrated into the development and 
deployment of AI technologies to build public trust and avoid unintended consequences 
(McGovern et al., 2022). Additionally, improving data quality and standardization is essential 
for generating reliable AI-driven insights from diverse climate data sources (Cheval et al., 
2020). By addressing these technical and ethical challenges, AI can be effectively leveraged to 
support global climate resilience efforts while minimizing risks (Hamdan et al., 2024). 

5. Future Directions and Recommendations  

AI certainly offers promising opportunities across mitigation and adaptation strategies, and it 
is a powerful tool for addressing climate change, but with caution. Given below are some key 
future directions, integrating recommendations, and opportunities for leveraging AI 
technologies to enrich climate resilience and contribute to SDG 13. 

5.1. Enhanced modelling and prediction  

The enhancement of climate models and prediction capabilities is one of the most significant 
advancements in climate research. These days, AI-driven models offer exceptional accuracy 
by integrating vast datasets from satellites, IoT sensors, and historical climate records 
(Olawade et al.,2024).  
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Quantum AI (QAI) further revolutionizes these models by enabling faster and more efficient 
simulations of extreme weather events and long-term climate patterns, leading to timely 
interventions. QAI is instrumental in developing climate strategies that leverage high-
resolution scientific data (Schneider, 2023).  

5.2. Ethical considerations  

The ethical application of AI for climate action is about ensuring fairness, transparency, and 
accountability. Bias mitigation is essential to prevent AI models from producing outcomes that 
can disproportionately affect the marginalized communities. For example, in hurricane damage 
assessments, AI frameworks can provide accurate, unbiased predictions to ensure fair resource 
allocation (Singh, et al 2024).  

Another crucial direction is the development of Explainable AI (XAI), which aims to improve 
transparency by making complex AI models more interpretable and understandable to 
stakeholders (Bolón-Canedo, 2024). XAI ensures that AI systems can explain their predictions 
in ways that are comprehensible to humans, thereby helping to retain and strengthen public 
trust (Gunning et al., 2019; Arrieta et al., 2020). As AI increasingly influences critical decisions, 
explainability, interpretability, and accountability are vital components that must be embedded 
within these systems (Atzmueller, 2024).  

5.3. Global data sharing, standardization, and cross-disciplinary collaboration  

It is crucial to enhance standards and global data sharing, where AI facilitates the seamless 
exchange of climate data across borders, enabling coordinated global efforts. This is especially 
vital for regions like Africa and Asia, which are more vulnerable to climate impacts and could 
benefit from enhanced technology transfer and collaboration (Srivastava & Maity, 2023). 
Collaboration between countries, academia, industry, governments, and civil society can foster 
knowledge sharing, data exchange, and joint research effort.  

5.4. Equity-focused solutions  

Vulnerability assessment using AI models helps identify at-risk populations and predicts how 
extreme events like hurricanes will affect specific areas and supports faster recovery and better 
resource allocation (Singh & Hoskere, 2024). Equity-focused solutions driven by AI should 
prioritize regions disproportionately affected by climate change, ensuring that climate finance 
reaches vulnerable populations along with adequate support. AI can identify areas which are 
more vulnerable to flooding and erosion, thereby allowing stakeholders to take proactive 
measures, such as building sea walls, relocating vulnerable infrastructure, or implementing 
zoning regulations to reduce risk (Jain et al., 2023; Yousef, 2023). This ensures that 
investments are directed toward the most vulnerable regions and sectors, maximizing their 
effectiveness (Pinner et al., 2020). 
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5.5. Policy and regulatory support  

A comprehensive policy framework and supportive regulation must be devised to promote the 
ethical and responsible use of AI in climate solutions. To best align the use of AI with climate 
change mitigation and adaptation pathways, Governments and international organizations can 
play an important role and should focus on data governance, privacy protection, algorithmic 
transparency, and standards for AI in climate applications (Mehrabi et al., 2021, Olawade et 
al., 2024). Policymakers can revitalize investment, encourage research and development by 
providing a conducive regulatory environment.  

5.6. Skill development and education  

Skill development and promoting education on AI for climate applications are essential to 
unlock its full potential. Various kinds of training programs should be developed to not only 
equip individuals, organizations, and communities with the necessary skills but also encourage 
capacity-building efforts, thereby focusing on diverse stakeholders, including policymakers, 
scientists, engineers, and practitioners to foster a multidisciplinary approach. By enhancing AI 
literacy and technical skills, stakeholders can effectively leverage AI tools and technologies 
for climate change mitigation and adaptation (Filho et al., 2022, Olawade et al., 2024). 

6. Conclusion 

The present study has explored various trends and the diverse applications of AI in climate 
resilience and how these technologies are playing a significant role in achieving SDG 13 targets. 
The study focused on three major areas: (1) weather and climate modelling (for better forecasts 
and taking better adaptation measures to minimize loss of life), (2) energy efficiency (for taking 
climate mitigation measures), and (3) agriculture (to avoid wastage of natural resources and 
being resilient to climate change). The findings determine that AI technologies have 
tremendous potential to address the multifaceted challenges posed by climate change, 
contributing significantly to both mitigation and adaptation efforts. From improving the 
accuracy of climate modelling and predictions to enhancing disaster risk management systems 
and optimizing renewable energy usage, AI is proving to be a critical enabler of climate action. 
The integration of AI in climate resilience efforts presents opportunities for both innovation 
and collaboration in climate research AI-driven solutions, such as early warning systems and 
smart grids are already transforming industries, making them more adaptive to climate risks. 
Moreover, AI’s role in remote sensing, carbon capture, and resource management is helping to 
create sustainable ecosystems, reduce GHG emissions, and foster long-term environmental 
monitoring. With the help of AI tools, developed countries can ensure an equal distribution of 
climate-related funds to vulnerable areas, and further create a strong decision-making support 
system. Further, there is a need to give major attention to skill development and capacity 
building in organizations to realize the goal of a sustainable future. Technology advancement 
is another area where AI technology players can play a big role in achieving climate resilience.  

Study highlights that AI acts as a facilitator in achieving SDG 13 targets, however, the 
application of AI must be approached with ethical considerations in mind, particularly in 



  
 

24 
 

ensuring transparency, accountability, and fairness. Addressing issues, such as AI bias and 
equitable access to technology will be critical in ensuring that the benefits of AI are shared 
across regions, especially in developing countries, which are often the most vulnerable to 
climate change impacts.  

In conclusion, AI’s role in achieving SDG 13 is indispensable. While current advancements 
are promising, future research and collaborative efforts are essential to fully harness AI’s 
potential. 
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