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Abstract 

This study explores the role of artificial intelligence (AI) in achieving Sustainable Development Goal 

(SDG) 3.1, which seeks to reduce global maternal mortality to less than 70 per 100,000 live births by 

2030. Despite progress, maternal mortality remains disproportionately high in developing countries, 

where healthcare infrastructure is weaker. AI offers the potential to enhance maternal health outcomes 

through improved diagnostic accuracy, personalized care, and predictive analytics, but its full potential 

in reducing maternal mortality remains underexplored, particularly in developing nations. 

Using panel data from 70 countries between 1990 and 2022, the study examines AI’s impact on 

maternal mortality in both developed and developing regions. It leverages AI robotics data (AI flow 

and AI stock) from the World Robotics database and employs econometric models such as 

Difference-in-Differences (DiD) and autoregressive distributed lag (ARDL) models to assess short- 

and long-term impacts. 

Key findings reveal that AI has a significant positive effect on reducing maternal mortality, particularly 

in developing countries. Post-2000, AI adoption reduced maternal mortality, with developing 

countries benefiting more due to their weaker healthcare infrastructure. In contrast, the impact in 

developed nations was positive but less pronounced due to already advanced healthcare systems. The 

ARDL results highlight that in developing countries, deviations from the long-run maternal mortality 

trend are corrected by 27% annually, and AI contributes to sustained reductions in maternal mortality 

over time. 

The study offers several policy recommendations. First, developing countries should prioritize AI 

investments in healthcare, especially maternal health, to improve diagnostic accuracy and enable 

targeted interventions. Second, governments must expand digital infrastructure and ensure equitable 

access to AI technologies to maximize benefits. Lastly, international organizations should work to 

prevent AI from exacerbating health inequalities, ensuring that AI tools are accessible to vulnerable 

populations, including women in rural and low-income areas. 
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1. Introduction 

This study evaluates the impact of Artificial Intelligence (AI) on Sustainable Development Goal 

(SDG) 3.1, which aims to reduce the global maternal mortality ratio to less than 70 per 100,000 live 

births. Despite a 34% reduction in maternal mortality from 2000 to 2020, progress remains 

insufficient, especially in developing countries with disproportionately high rates (World Health 

Organisation (WHO), 2023). And also, despite advancements in healthcare, maternal mortality 

remains a critical issue globally, with significant disparities between developed and developing 

countries. The integration of Artificial Intelligence (AI) into healthcare promises transformative 

improvements in maternal health outcomes by enhancing diagnostic accuracy, treatment 

personalization, and predictive analytics. (Vemuri et al., 2020; Nishtala et al., 2020; Reddy et al., 2021; 

Khan, 2022). However, the extent and efficacy of AI applications in reducing maternal mortality across 

different global regions are not well-documented, necessitating thorough empirical investigation. 

Globally, maternal mortality rates have declined but remain alarmingly high in developing regions due 

to inadequate healthcare infrastructure and access. In contrast, developed countries have leveraged 

technology, including AI, to enhance maternal healthcare services significantly. However, the global 

penetration and impact of AI vary, with developed countries adopting these technologies at a faster 

rate than their developing counterparts. 

Several AI applications, such as predictive analytics and decision support systems, can reduce medical 

errors during pregnancy, childbirth, and postpartum care. For instance, AI technologies can identify 

high-risk pregnancies, provide personalized care plans, and improve access to healthcare services. This 

can be done through various channels, including the early detection of pregnancy-related 

complications and the early detection of highly current literature, mainly focused on high-income 

countries where access to advanced healthcare infrastructure and digital health records is more 

common. However, maternal mortality rates are disproportionately higher in low-resource settings, 

where access to healthcare is limited, and the healthcare infrastructure is often underdeveloped. 

Additionally, it is crucial to ensure that AI solutions do not perpetuate existing disparities.  

 AI algorithms have been developed to predict the risk of postpartum hemorrhage (PPH), a leading 

cause of maternal mortality. In the USA, Venkatesh et al. (2020) used logistic regressions to predict a 

woman’s risk of PPH.  Their findings suggest that PPH can be accurately predicted with machine 

Learning. Similarly, in a study in Iran, Mehrnoush et al. (2023) employed a bivariate logistic regression 

to predict postpartum hemorrhage. Their results showed that machine learning models were a reliable 

method for enhancing the accuracy of postpartum hemorrhage predictions. 

Hypertensive disorders in pregnancy have been identified as another leading cause of maternal deaths, 

complicating 5% to 10% of all pregnancies (WHO, 2011; Hutcheon et al., 2011). It was found to be 

the leading cause of maternal mortality in industrialized nations. The prevalence of hypertensive 

disorders is ever on the increasing side (Centers for Disease Control and Prevention, 2019). 

Hypertension prevalence during delivery hospitalizations increased from 67.2 to 81.4 per 1000 

deliveries from 1998 to 2006. The rise might be caused by the increasing prevalence of cardio-

metabolic disease in women of childbearing age.  From maternal age above forty years of pregnancy, 
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excess weight gain during pregnancy, obesity, and gestational diabetes are linked with increased risks 

of maternal hypertension.   

Margret, Rajakumar, Arulalan, and Manikandan (2024) investigate how machine learning (ML) could 

be adopted to reduce maternal mortality. Historical data on maternal health were adopted to generate 

predictive models, resource allocation techniques, and early detection systems. Machine learning 

assists in monitoring vital signs, identifying risk factors, and improving access to care. This permits 

better healthcare delivery and targeted interventions. The concerns of model interpretation and data 

accessibility were addressed. Results revealed the potential of ML to lessen maternal mortality rates 

and the pressing need for its incorporation into healthcare systems worldwide. 

Kwon, Kim, Jeon, Lee, Lee, Cho, and Oh (2019) aimed to develop a deep-learning-based AI algorithm 

for predicting the mortality rate in Korea. Data were extracted from 2165 patients to generate 12,654 

datasets from patients with acute heart failure (AHF). Evidence from the result showed that the area 

under the receiver operating characteristic curve of the DAHF was 0.880 (95% confidence interval, 

0.876–0.884) for predicting in-hospital mortality; these results significantly outperformed those of the 

GWTG-HF (0.728 [0.720–0.737]) and other machine-learning models.  

Ahmed, Sun, Shelly, and Mu (2021) applied explainable AI on a stackable machine learning model 

framework to explore the spatial distribution of the contributions of known risk factors to maternal 

mortality rates in the conterminous United States. Five base learners adopted include random forest, 

generalized linear model, extreme Gradient boosting machine, Gradient boosting machine, and Deep 

Neural Network for developing stack-ensemble models. Generally, the stack ensemble performs 

better than all three spatial regression models and the base learners. Smoking prevalence as the most 

critical predictor was ranked high by the permutation-based feature technique, followed by poverty 

and elevation. 

Based on the above discussion, this study addresses the urgent need to explore how AI can improve 

maternal healthcare outcomes globally, both in developed and developing countries. AI's potential to 

manage complex healthcare data and aid decision-making could significantly reduce mortality rates, 

especially in under-resourced areas. While existing literature highlights AI's theoretical benefits, there 

is a lack of empirical evidence from diverse global contexts. Specifically, there is a gap in longitudinal 

studies comparing AI's impact on maternal health across different regions. Firstly, this research 

contributes to the empirical literature by providing a comprehensive analysis of the effects of AI on 

maternal mortality using advanced econometric techniques not widely employed in previous studies. 

It uniquely combines AI indices (AI stock and AI flow) with maternal health outcomes to offer 

differentiated insights into the dynamics of AI's impact over time and across different economic 

contexts. By incorporating AI variables (AI stock and AI flow) into our analysis of maternal health 

outcomes introduces a novel dimension to the health economics literature.  This study uses annual 

panel data from 70 countries, disaggregated into 39 developed and 31 developing nations, based on 

AI robotics data from World Robotics (1990–2022). 

Secondly, we contribute to the literature by utilizing a combination of descriptive statistics, pairwise 

correlations, and advanced econometric methods including spatial visual approaches, Difference-in-
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Difference (DiD) estimators, and dynamic panel ARDL models. These methods allow for a nuanced 

understanding of the temporal and spatial variations in the data, addressing both short-term and long-

term impacts of AI on maternal mortality. The use of these diverse methodologies provides a robust 

framework for overcoming limitations seen in earlier studies, such as addressing endogeneity issues 

and capturing complex dynamics that simpler models may overlook. The selected econometric 

strategies enhance the study's ability to provide a more accurate and comprehensive assessment of 

AI's impact on maternal health. For instance, the dynamic panel ARDL approach facilitates an 

examination of both long-term relationships and short-term dynamics without requiring all series to 

be stationary. This flexibility is critical given the varied nature of the economic and healthcare 

environments across the countries studied. The Difference-in-Difference approach further 

strengthens the analysis by effectively isolating the effect of AI implementation from other 

confounding influences, providing a clearer causal interpretation of the results. These methodologies 

collectively enable a sophisticated analysis that adds depth to the understanding of how AI 

technologies can be strategically leveraged to enhance maternal health outcomes globally, particularly 

in settings with varying levels of economic development and healthcare infrastructure. 

Thirdly, our study is crucial for projecting how AI could significantly transform global healthcare delivery 

and maternal mortality outcomes. It offers empirical evidence to support increased AI integration into 

healthcare policies and practices, aiming for substantial reductions in maternal mortality rates both 

globally and in developing countries. And lastly, by linking Grossman’s (1972) health capital model 

with modern AI applications, our study enriches the theoretical discourse on technology's role in 

enhancing health capital. It posits that AI serves as an investment in health capital, which potentially 

reducing maternal mortality through improved healthcare services and patient outcomes. 

By elucidating these contributions, our research not only fills a critical gap in the existing literature but 

also sets the stage for future studies to explore other dimensions of AI’s impact on different aspects 

of public health. 

The paper is structured as follows: Section 2 outlines the methodology and data, while Section 3 

presents the results of the empirical analysis. Section 4 then offers policy recommendations based on 

these findings. 

 

2. Methodology and data 

2.1 Empirical strategies  

To achieve the objectives of this study, we employed descriptive statistics to clearly and concisely 

summarize the main features of the dataset. Additionally, we applied the pairwise correlation approach 

to explore initial relationships between the variables. In this section, we also outline other analytical 

methods used, including the spatial visual approach, difference-in-difference estimator, fixed effects 

regression (and its forecasting components), and the dynamic panel autoregressive distributed lag 

(ARDL) approach. Detailed explanations of these methods are provided in the following subsections. 
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2. 2 Theoretical underpinning and empirical model specifications 

This study draws on the demand for health theory, which suggests that health investments, including 

technological innovations, affect overall health outcomes. Grossman’s (1972) concept of “health 

capital” highlights that health can improve or deteriorate over time through investments like medical 

care and preventive measures. Integrating AI into maternal health strategies can enhance the 

effectiveness of these investments, reduce barriers, and lower maternal mortality rates. The study also 

considers socioeconomic determinants influencing mortality, aligning them with the demand for 

health framework. Furthermore, according to Mugoye et al. (2019), Oprescu et al. (2020) artificial 

intelligence (AI) enhances maternal healthcare through advanced diagnostics, personalized treatment 

plans, and predictive analytics. AI algorithms analyze medical data to predict high-risk pregnancies 

and suggest early interventions, potentially reducing maternal mortality rates. For example, AI-driven 

models can forecast complications like preeclampsia and gestational diabetes more accurately than 

traditional methods, facilitating timely and targeted care (Marvin, 2022; Freeman et al., 2020). 

Therefore, the functional form equation can be presented as:  

𝑚𝑚𝑟𝑖𝑡 = 𝑓(𝐴𝐼𝑖𝑡 , 𝑋𝑖𝑡)1                                                                                                                                      (1)  

Where 𝑚𝑚𝑟 is maternal mortality, 𝐴𝐼 represents overall AI application in healthcare and 𝑋 includes 

other explanatory variables influencing maternal mortality, such as healthcare access, infrastructure 

quality, socioeconomic factors, and health policy environments. 𝑖 𝑎𝑛𝑑 𝑡 represents individual country 

and time, respectively. Further details on the control variables are provided in Table 1. Before 

expanding on Eq. 1, it is important to note that the overall AI index, generated through Principal 

Component Analysis, comprises two key indicators: AI Stock and AI Flow.  AI stock represents the 

accumulated AI technologies within healthcare systems, enhancing monitoring and intervention in 

maternal health, thus reducing mortality (Jiang et al., 2017). AI flow involves the continuous 

integration of new AI innovations, enabling healthcare providers to respond more effectively to 

emergencies, improving survival rates (Kharb and Joshi, 2023). The functional form of Equation 1 is 

further subdivided into two parts, as detailed in the footnote. 

The explicit functional form of Equation 1 is as follows: 

𝑚𝑚𝑟𝑖𝑡 = 𝐴𝐼𝑖𝑡 +  𝑋𝑖𝑡                                                                                                                                 (2)    

The econometric model is specified as follows: 

𝑚𝑚𝑟𝑖𝑡 = 𝛽0 +  𝛽1𝐴𝐼𝑖𝑡 + ∑ 𝛽2𝑖
9
𝑖=1 𝑋𝑖,𝑡 + ℇ1𝑖,𝑡                                                                                         (3)     

Where: ℇ𝑖𝑡 is the error term;  𝛽0, 𝛽1 and 𝛽2 are parameters to be estimated. The framework above 

offers a comprehensive foundation for analyzing AI's impact on maternal mortality by integrating 

technological advancements with traditional health determinants to evaluate their combined effect on 

 
1𝑚𝑚𝑟𝑖𝑡 = 𝑓(𝑎𝑖𝑎𝑝𝑓𝑙𝑜𝑤𝑖𝑡, 𝑋𝑖𝑡), and 𝑚𝑚𝑟𝑖𝑡 = 𝑓(𝑎𝑖𝑎𝑝𝑠𝑡𝑜𝑐𝑘𝑖𝑡, 𝑋𝑖𝑡)  
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maternal health outcomes. The econometric techniques discussed in the following sections are derived 

from Equation 3. 

 

2. 3 Difference-in-Difference (DiD) econometric specification 

The Difference-in-Differences (DiD) econometric technique is ideal for our study on the impact of 

AI on maternal mortality across countries for several reasons. First, health policy interventions are not 

implemented simultaneously worldwide, making DiD effective for analyzing treatments like AI in 

healthcare introduced at specific times and locations. It allows us to compare changes over time 

between treatment and control groups. Secondly, we used DiD methods with country-specific fixed 

effects to account for both observed and unobserved heterogeneities at the country level. Additionally, 

DiD controls for confounding variables and is robust to external shocks affecting all groups. 

The basic DiD model estimated is specified as follows: 

𝑚𝑚𝑟𝑖𝑡 = 𝛽0 +  𝛽1𝑃𝑜𝑠𝑡𝑡 + 𝛽1𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 + 𝛽2(𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 × 𝑃𝑜𝑠𝑡𝑡) + 𝜑𝑖 + 𝜑𝑡 + ℇ𝑖,𝑡     (5)   

Where 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖 takes 1 if having non-zero AI robots flows or stocks and 0 otherwise; and               

𝑃𝑜𝑠𝑡𝑡  takes 1 if year ≥2000 and 0 otherwise; 𝜑𝑖 is fixed effects for countries; and 𝜑𝑡 is the time effect 

capturing global or common shocks affecting all countries. 

 

2. 4 Dynamic panel autoregressive distributed lag (ARDL) approach. 

This study employed the dynamic panel ARDL approach to assess AI's impact on maternal mortality 

for several reasons: it handles both short- and long-term dynamics, accommodates mixed integration 

orders, and allows for causality and long-term relationships. Additionally, it offers flexibility, as it does 

not require all variables to be stationary, unlike methods such as the Engle-Granger two-step 

procedure (Pesaran et al., 1999; Sulaiman and Abdul-Rahim, 2018; Behera and Mishra, 2020). 

Therefore, the panel ARDL is formulated as follows: 

∆𝑙𝑜𝑔𝑚𝑚𝑟𝑖𝑡 = 𝛽0 +  ∑ ℶ𝑖𝑗
𝑘
𝑖=1 ∆𝑙𝑜𝑔𝑚𝑚𝑟𝑗,𝑡−𝑖 + ∑ 𝛽𝑖𝑗

𝑘
𝑖=1 𝑙𝑜𝑔∆𝑋𝑖,𝑡 + 𝛼1𝑙𝑜𝑔𝑚𝑚𝑟𝑗,𝑡−𝑖 +

∑ 𝛼𝑖𝑗
𝑘
𝑖=1 𝑙𝑜𝑔𝑋𝑖,𝑡 + ℇ𝑖,𝑡                                                                                                                  (6) 

In Eq. 6, 𝑖 =  1, . . . , 𝑛 is the country index, 𝑡 =  1, . . . , 𝑇 is the time index, ℇ𝑖,𝑡 is the error term, 𝑚𝑚𝑟 

is maternal mortality and  𝑋 includes all the explanatory variables influencing maternal mortality 

(please see Table 1), ∆ is the 1st variation factor, and 𝑘 is the ideal lag length. To investigate the long-

term cointegration relationship between the variables, the following assumptions are made: 

𝐻0 = 𝛺1 = 𝛺2, … , 𝛺𝑛 = 0 (There is no cointegration)                                                                (7) 

𝐻1 = 𝛺 ≠ 𝛺2, … , 𝛺𝑛 ≠ 0 (There is cointegration)                                                                       (8) 

The assumption of no cointegration can be tested and compared with cointegration using the F test, 

which applies regardless of whether the variables are I(0), I(1), or a combination of both. Given the 
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small sample size, the analytical approach found in Pesaran et al. (1999) and Narayan and Narayan’s 

(2005) studies were applied. The test uses panel autoregressive distributed lag bounds. If the F statistic 

exceeds the I(1) bound, cointegration exists; if below I(0), we accept the null hypothesis. If in between, 

no clear conclusion is drawn. Once a long-run relationship is established between the dependent 

variables and the regressors, the panel ECM model, as shown in Equation (9), can be expressed as 

follows: 

∆𝑙𝑜𝑔𝑚𝑚𝑟𝑖𝑡 = 𝛽0 +  ∑ ℶ𝑖𝑗
𝑘
𝑖=1 ∆𝑙𝑜𝑔𝑚𝑚𝑟𝑗,𝑡−𝑖 + ∑ 𝛽𝑖𝑗

𝑘
𝑖=1 𝑙𝑜𝑔∆𝑋𝑖,𝑡 + 𝛼𝑖𝐸𝐶𝑀𝑖,𝑡−1 + ℇ𝑖,𝑡               (9) 

The coefficient 𝛼𝑖  in the ECM represents the speed at which adjustments are made annually toward 

long-run equilibrium. 

 

2. 5 Fixed effect regression multivariate forecasting approach. 

Fixed effect regression in a multivariate forecasting context involves controlling for individual-specific 

characteristics that do not change over time and could bias the estimated coefficients if not accounted 

for. This model is especially useful in panel data settings where the same entities (such as countries, 

companies, or individuals) are observed over multiple time periods. In multivariate forecasting, the 

fixed effect model can be expressed as follows: 

𝑚𝑚𝑟𝑖𝑡 = 𝛽0 +  𝛽1𝐴𝐼𝑖𝑡 + ∑ 𝛽𝑘𝑖
9
𝑖=1 𝑋𝑖,𝑡 + 𝜇𝑖 + ℇ𝑖,𝑡                                                                        (10) 

Where: 

• 𝑚𝑚𝑟𝑖𝑡is the dependent variable for country 𝑖 at time 𝑡. 

• 𝑋𝑖,𝑡 is the vector of the explanatory variables for country 𝑖 at time 𝑡. 

• 𝛽0, 𝛽1,…, 𝛽𝑘 are the coefficients to be estimated. 

• 𝜇𝑖  represents the unobserved individual-specific effect (fixed effect) that captures all time-

invariant characteristics of each entity. 

• ℇ𝑖,𝑡 is the error term for country 𝑖 at time 𝑡, assumed to be independently and identically 

distributed. 

For the forecast element: 

The forecast element in this model involves predicting future values of 𝑚𝑚𝑟𝑖𝑡 based on known or 

forecasted values of the 𝑋𝑖,𝑡 variables which also include the AI. After estimating the coefficients 

 𝛽 and the individual fixed effects 𝜇𝑖 , the model can be used for forecasting by inputting the values 

of 𝑋𝑖,𝑡 for future time periods: 

𝑚𝑚𝑟𝑖𝑡̂ = �̂�0 +  �̂�1𝐴𝐼𝑖𝑡 + ∑ �̂�𝑘𝑖
𝑘
𝑖=1 𝑋𝑖,𝑡 + ℇ𝑖,𝑡                                                                                        (11) 

Where 𝑚𝑚𝑟𝑖𝑡̂ is the forecasted value of 𝑚𝑚𝑟𝑖𝑡 for country 𝑖 at future time 𝑡. 

2.6 Data 

This study uses annual panel data from 70 countries, disaggregated into 39 developed and 31 

developing nations, based on AI robotics data from World Robotics (1990–2022). The selection was 



8 
 

driven by data availability for the variables in Table 1. The recent data ensures relevance to current 

policy, economic, and health planning. The primary data sources are the WHO Global Burden of 

Disease (GBD), World Bank's World Development Indicators (WDI), and UNCTAD databases. 

Table 1 outlines the variables used in this research. 

Table 1: Variable description and data sources 

Indicator Computation  Constituent 
variables  

Sources  

mmr_nw Maternal mortality ratio (per 100,000 live births) mmr WHO database 

Artificial intelligent indicators 

aiapflow Industrial and services robotics flow aiapflow World Robotics 

Congress database 

aiapstock Industrial and services robotics stock aiapstock World Robotics 

Congress database 

Ai_ind Index of artificial intelligence, from the Principal Component analysis (PCA) of:  

Digitally deliverable services exports, Current USD (millions) ddsx_cusd UNCTAD database 

Digitally deliverable services imports, Current USD (millions) ddsm_cusd UNCTAD database 

Frontier technology readiness index, R&D ftri_rd UNCTAD database 

Frontier technology readiness index, overall ftri_oi UNCTAD 

Frontier technology readiness index, industry activity ftri_ia UNCTAD database 

Frontier technology readiness index, ICT ftri_ict UNCTAD database 

Frontier technology readiness index, access to finance ftri_af UNCTAD database 

ICT services exports Current USD (millions) ictstx_cusd UNCTAD database 

ICT services exports percentage of total world ictstx_petw UNCTAD database 

ICT services imports Current USD (millions) ictstm_cusd UNCTAD database 

Share of ICT goods re-imports ictg_rm UNCTAD database 

Share of ICT goods exported ictg_x UNCTAD database 

Share of ICT goods imported ictg_m UNCTAD database 

cm_ind Index of comorbidities, as a Principal Component analysis (PCA) of:   

Prevalence of anemia among women of reproductive age (% of 
women ages 15-49) 

cm_apw WHO, GBD database 

Suicide mortality rate, female (per 100,000 female population) cm_srf WHO, GBD 
database 

Women's share of population ages 15+ living with HIV (%) cm_hivpf WHO, GBD 
database 

ha_ind Index of health access, from the Principal Component analysis (PCA) of:  

Nurses and midwives (per 1,000 people) ha_nmt WDI database 

Physicians (per 1,000 people) ha_ppt WDI database 

he_ind1 Index of health expenditure computed via Principal Component 
analysis (PCA) of: 

  

Current health expenditure (% of GDP) he_gdp WDI database 

Current health expenditure per capita (current US$) he_pc WDI database 

Current health expenditure per capita, PPP (current international $) he_ppp WDI database 

he_oops Out-of-pocket expenditure (% of current health expenditure) he_oops WDI database 

inf_ind Index of infrastructure, from the Principal Component analysis (PCA) of:  

Access to electricity (% of population) inf_ael WDI database 
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Individuals using the Internet (% of population) inf_inp WDI database 

se_indp Socioeconomic indicator correlating positively with mmr, from the PCA of:  

GDP per capita (constant 2015 US$) se_gdppc WDI database 

People with basic handwashing facilities including soap and water (% 
of population) 

se_hwf WDI database 

Employment to population ratio, 15+, female (%) (national estimate) se_eprf WDI database 

Labor force participation rate, female (% of female population ages 
15-64) (modeled ILO estimate) 

se_flfpr WDI database 

se_indn Socioeconomic indicator correlating negatively with mmr, from the PCA of:  

Poverty headcount ratio at $2.15 a day (2017 PPP) (% of population) se_phr2_15 WDI database 

Poverty headcount ratio at $3.65 a day (2017 PPP) (% of population) se_phr3_65 WDI database 

Poverty headcount ratio at $6.85 a day (2017 PPP) (% of pop.) se_phr6_85 WDI database 

Prevalence of undernourishment (% of population) se_unp WDI database 

Age dependency ratio (% of working-age population) se_adr WDI database 

oca_ind Proxy of Obstetric Care Availability, measured by:  

Births attended by skilled health staff (% of total) oca_bsw WDI database 

de_frt Fertility rate, total (births per woman) de_frt WDI database 

Source: Author’s compilation. 

 

3. Results 

3.1 Descriptive statistics 

Table 2 provides the descriptive statistics across all countries, as well as in developed and developing 

countries.  In all the countries under study, the maternal mortality ratio averages 55.96 deaths per 

100,000 live births, with a standard deviation of 157.27. In developed countries, the maternal mortality 

ratio averages 12.03 deaths per 100,000 live births, with by a low standard deviation of 12.06, indicating 

minimal variations among these countries. In comparison, developing countries display a very high 

average level of maternal mortality ratio at 109.49 deaths per 100,000 live births with considerable 

variations (standard deviation of 222.51). 

Globally, the average flow of 2,094.33 units and a stock of 16,068.02 units, with significant variations 

across countries (standard deviations of 9,534.13 and 62,002.22, respectively). Developed countries 

have higher levels of technological infrastructure, with an average flow and stock of industrial and 

service robots of 2,673.55 and 23,941.95, respectively. The adoption of industrial and service robotics 

in developing countries is far lower, averaging 1,388.41 units in flows and 6,471.66 units of stock, well 

below the levels observed in developed countries, with significant variability. All the indicators that 

help in reducing maternal mortality, such as health access, affluent socioeconomic indicators are 

significantly lower in developing countries compared with developed countries. Indicators of 

deprivation and factors that contribute to higher maternal mortality are high in developing countries. 

The low levels of AI adoption coupled with low levels of essential infrastructure and supporting health 

environment suggest that the health benefits of AI are likely to accrue well in developing countries, 

despite projected adverse labour market conditions (Oxford Economics, 2019). 
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Table 2: Summary statistics 
 

Variable  
Obs 

 Mean  Std. Dev.  Min  Max   N   Mean   SD   Min   Max   N   Mean   SD   Min   Max 

 All countries Developed Developing 

 mmr 1988 55.957 157.266 1.082 1792.347 1092 12.033 12.062 1.082 89.765 896 109.49 222.507 4.519 1792.347 
 aiapflow 1988 2094.331 9534.133 0 175546 1092 2673.549 7448.472 0 55240 896 1388.41 11544.252 0 175546 
 aiapstock 1988 16068.02 62002.218 0 956477 1092 23941.954 67882.369 0 412961 896 6471.663 52437.923 0 956477 
 cm ind 1360 -.855 .836 -2.618 2.156 760 -1.243 0.514 -2.618 .346 600 -.364 0.906 -2.064 2.156 
 cm apw 1360 19.687 9.726 7.3 54.2 760 14.959 5.527 7.3 29 600 25.676 10.566 7.9 54.2 
 cm srf 1400 5.77 3.826 .7 24.4 780 7.305 3.677 .7 24.4 620 3.84 3.060 .7 16.4 
 cm hivpf 1953 27.58 11.954 6.1 85.59 1085 25.359 9.314 7.48 50.34 868 30.358 14.119 6.1 85.59 
 ha ind 1270 .621 1.147 -1.91 4.045 844 1.18 0.805 -1.23 4.045 426 -.487 0.893 -1.91 1.984 
 ha nmt 1366 6.832 4.263 .14 23.07 884 8.618 3.760 1.09 23.07 482 3.557 3.003 .14 13.34 
 ha ppt 1478 2.678 1.183 .02 7.06 955 3.275 0.857 1.01 7.06 523 1.59 0.885 .02 4.26 
 he ind1 1451 .901 1.944 -1.585 11.124 819 1.815 1.987 -1.043 11.124 632 -.283 1.040 -1.585 5.246 
 he gdp 1452 6.971 2.72 1.6 19.69 819 8.318 2.157 3.86 18.76 633 5.228 2.359 1.6 19.69 
 he pc 1452 1767.78 2089.294 13.21 11758.42 819 2645.399 2272.194 21 11758.42 633 632.283 1024.728 13.21 6467 
 he ppp 1451 2037.138 1782.02 52.35 11758.42 819 2786.383 1861.323 149 11758.42 632 1066.203 1064.540 52.35 6434 
 he oops 1452 28.8 15.433 5.21 85.05 819 23.617 10.092 7.14 51.94 633 35.507 18.308 5.21 85.05 
 inf ind 1901 .743 .89 -2.306 2.232 1075 .996 0.793 -.358 2.221 826 .414 0.903 -2.306 2.232 
 inf ael 1923 96.61 10.951 7.7 100 1092 99.656 1.419 88.1 100 831 92.607 15.711 7.7 100 
 inf inp 1966 39.38 32.963 0 100 1075 48.318 33.113 0 99.53 891 28.596 29.375 0 100 
 se indp 179 -.725 1.275 -3.191 2.473 27 -.619 1.195 -1.827 1.301 152 -.744 1.291 -3.191 2.473 
 se gdppc 1958 21013.924 19489.455 354.09 87123.66 1090 27099.931 19484.684 740.63 87123.66 868 13371.358 16597.229 354.09 73493.27 
 se hwf 219 75.457 22.241 10.72 98.13 27 94.114 5.150 86.98 98.13 192 72.833 22.468 10.72 97.4 
 se eprf 1608 45.892 12.895 7.62 85 999 49.145 9.699 19.95 85 609 40.557 15.466 7.62 71.89 
 se flfpr 1988 56.473 16.209 10.66 86.25 1092 64.451 9.617 32.75 86.25 896 46.749 17.269 10.66 80.11 
 se indn 894 -.772 1.137 -2.27 7.482 623 -1.2 0.413 -1.753 2.871 271 .21 1.580 -2.27 7.482 
 se phr2 15 1060 3.772 9.026 0 81.5 715 .929 2.725 0 33.5 345 9.664 13.555 0 81.5 
 se phr3 65 1060 8.975 17 0 94.7 715 2.331 6.811 0 66 345 22.743 22.617 0 94.7 
 se phr6 85 1060 18.87 26.268 0 99.1 715 6.734 14.057 0 90.8 345 44.021 27.813 0 99.1 
 se unp 1360 5.042 5.722 2.5 50.4 780 2.945 2.871 2.5 33.4 580 7.863 7.201 2.5 50.4 
 se adr 1988 51.339 10.721 16.17 92.09 1092 49.539 5.226 36.48 70.94 896 53.532 14.599 16.17 92.09 
 de frt 1988 2.034 .851 .84 6.57 1092 1.588 0.333 .84 3.11 896 2.577 0.968 .92 6.57 
 oca bsw 1267 96.089 10.639 18 100 775 99.159 1.192 88.9 100 492 91.254 15.852 18 100 
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The pairwise correlation results presented in Tables 3 reveal several significant relationships The 

significant negative correlations between industrial and services robotics flow and stock and maternal 

mortality rate (mmr) suggest that an improvement in AI technology decreases maternal mortality rates. 

AI technologies enhance health outcomes through improved diagnosis and treatment methods, 

streamlined processes, and improved resource allocation (Obermeyer and Emanuel, 2016; Udegbe et 

al., 2024). Some studies have suggested that low levels of healthcare infrastructure and human capital 

investments can limit the role of AI technologies on health outcomes such as maternal mortality 

(Souza et al., 2024). The Indices of Health Access and Health Expenditure exhibit the expected 

negative relationships with maternal mortality rates, showing them as key determinants of maternal 

mortality rate reduction (Alkema et al., 2016; Mweemba et al., 2021).  

There is a positive correlation between OOP health expenditure and maternal mortality ratio. In 

countries where individuals incur a greater share of health expenses, maternal mortality rates is likely 

to be higher. Xu et al. (2003) has shown that higher personal healthcare expenses reduce access, 

particularly among low-income groups, resulting in poor health outcomes. The negative relationship 

between OOP and health corroborates this. As expected, comorbidities are positively correlated, 

highlighting the significant impact of pre-existing health conditions on maternal mortality, aligning 

with Say et al. (2014) and Chou et al. (2016). Other key factors in reducing maternal mortality revealed 

by the correlations are obstetric care availability (Campbell and Graham, 2006); affluent 

socioeconomic conditions (Bongaarts, 2016), and the index of overall infrastructure.  However, poor 

socioeconomic conditions and increased fertility rates lead to higher maternal mortality.  

   
Table 3: Pairwise correlations  

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

(1) aiapflow 1.000          
(2) aiapstock 0.913* 1.000         
(3) mmr -0.056* -0.069* 1.000        
(4) ha_ind -0.031 0.020 -0.424* 1.000       
(5) he_ind1 0.155* 0.267* -0.226* 0.765* 1.000      
(6) he_oops -0.073* -0.142* 0.446* -0.478* -0.559* 1.000     
(7) cm_ind -0.186* -0.254* 0.555* -0.453* -0.520* 0.442* 1.000    
(8) oca_bsw 0.079* 0.082* -0.701* 0.377* 0.250* -0.474* -0.382* 1.000   
(9) se_indn -0.065* -0.099* 0.759* -0.508* -0.436* 0.593* 0.604* -0.665* 1.000  
(10) se_indp 0.198* 0.216* 0.253* -0.081 0.014 -0.227* -0.013 0.245* -0.241* 1.000 
(11) de_frt -0.130* -0.160* 0.668* -0.415* -0.296* 0.412* 0.589* -0.694* 0.681* -0.243* 
(12) inf_ind 0.146* 0.176* -0.523* 0.495* 0.626* -0.589* -0.627* 0.421* -0.714* -0.123 

*** p<0.01, ** p<0.05, * p<0.1 

It is important to note that the key determinants of maternal mortality are highly correlated among 

themselves, but most importantly to the indicators of AI robotics technology. This poses the problem 

of highly collinear regression models, explaining why in the subsequent analysis, we emphasize the 

bivariate approaches. 

According to the map shown in Figure 3, in 2020, global maternal mortality rates (MMR) remained a 

significant health concern, with persistent country and regional differences.  These countries continue 

to face substantial challenges, including weak healthcare systems, limited access to skilled healthcare 

providers, poor infrastructure, and high fertility rates, all of which lead to increased maternal mortality 

(Say et al., 2014). Additionally, high poverty levels and inadequate nutritional status among women 

exacerbated maternal health concerns.  The COVID-19 pandemic in 2020 further exacerbated the 
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already fragile healthcare systems in most African countries, resulting in deteriorated maternal health 

outcomes (Chmielewsk et al., 2021). In contrast, high-income countries, especially in Europe, East 

Asia, and North America still exhibit significantly low maternal death rates in 2020.  

 

Figure 3: distribution of maternal mortality rates across countries 

Figure 4 maps the distribution of robotic flows (upper map) and stocks (lower map) worldwide. 

Countries with no data are absent from the maps. In 2020, the global flow was characterized by 

significant progress, as countries progressively integrated AI into many areas, including healthcare, 

manufacturing, banking, and education. There was significant variations in AI adoption and utilization 

between countries and regions, driven by factors including technological infrastructure, investment, 

and digital preparedness. Many countries in East Asia, North America and Europe show high AI flow 

in 2020. Countries that recorded the highest AI inflow were predominantly high-income countries, 

with advanced digital infrastructures and significant investments in AI research and development 

(R&D). East Asia countries recorded AI flow of over 150,000. Many of these countries experienced 

significant AI inflow in healthcare sectors to improve diagnosis accuracy, personalize treatment plans, 

and streamline clinical workflows (Topol, 2019).  
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Figure 4: Maps of industrial and services robot flows and stocks 

However, low-income countries, particularly in sub-Saharan Africa and South Asia experienced 
relatively low AI flow in 2020, mainly due to weak technological infrastructure, inadequate digital 
literacy, and lack of investments in AI R&D and skilled AI professionals. While some countries like 
South Africa and Kenya have started to adopt AI in various sectors like agriculture and healthcare, 
the overall AI flow in Africa remain low (Manyika et al., 2020). 

Consequently, countries with the highest AI stocks were generally high-income countries in North 

and Central America, Europe and East Asia. These countries are characterized by high investment in 

AI, with strong digital infrastructure, and significant AI research and development. AI stocks in these 

countries are predominantly concentrated in healthcare, autonomous vehicles, defense, and finance 

(Zhang and Lu, 2021).  
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3.2 Difference-in-Difference estimations 

In 2000, Breazeal (2000) developed Kismet, the first robot capable of simulating human emotions. 

Two years later, in 2002, the release of the first Roomba, a consumer-grade autonomous robotic 

vacuum cleaner, showcased how robots could be integrated into everyday life for practical use. These 

advancements highlight the rapid progress in robotics at the turn of the millennium, making 2000 a 

pivotal year for AI and robotic developments. The year 2000 is therefore chosen as the post-treatment 

cut-off for assessing the impact of AI robots on maternal mortality due to rapid advancements in AI 

and robotics starting in that period.  

The difference-in-difference (DiD) results in Table 4 and Figure 5, indicate varying impacts of AI 

depending on the level of development. The treated group in the developing countries included in the 

study has on average 92.04 (113.82) higher maternal mortality rate than the control group for robots 

stock (flow), however, there are fewer maternal deaths per 100,000 live births post-year 2000 relative 

to pre. In developed countries, the treated groups and post year show lower maternal mortality rates.  

Table 4: The effects of AI on maternal mortality using difference in difference estimator 

 (1) (4) (2) (5) (3) (6) 
 AI stock AI Flow AI stock AI flow AI stock AI flow 
VARIABLES all countries Developed Developing 

       
treat 74.250*** 86.238*** -12.265*** -13.138*** 92.041*** 113.826*** 
 (8.118) (8.847) (0.912) (0.984) (11.324) (12.442) 
post -21.349** -40.848*** -9.603*** -15.222*** -28.146** -60.420*** 
 (9.712) (7.709) (0.974) (0.771) (14.174) (11.386) 
treat_post -88.133*** -68.541*** 4.8217*** 11.002*** -109.832*** -77.365*** 
 (10.488) (8.686) (1.115) (0.949) (15.049) (12.478) 
Constant 203.884*** 195.064*** 26.433*** 26.899*** 268.800*** 251.737*** 
 (6.762) (7.242) (0.684) (0.7190) (9.7455) (10.556) 
       
Observations 4,956 4,956 1,260 1,260 3,696 3,696 
R-squared 0.140 0.141 0.338 0.326 0.175 0.176 
Number of cid 177 177 45 45 132 132 
ll -30011 -30009 -4147 -4158 -22845 -22841 
F 259.7 260.7 206.3 195.5 251.0 254.1 

Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 

The interactions between the treatment and post-treatment period (treat_post), which captures the 

actual impact is significant and negative in all the countries and the developing country sample (-

88.133 and -68.541 for all countries and -109.83 and -77.37 for developing countries respectively for 

AI stocks and flows). This indicates that as AI technologies are increasingly integrated into healthcare 

systems, their positive impact becomes more pronounced in developing countries, resulting in 

significant decreases in maternal mortality rates over time. This is consistent with Wilson and 

Daugherty (2018), who emphasize the transformative potential and cumulative benefits of AI to 

improve healthcare access and outcomes in developing regions. 

In developed countries where maternal mortality rates are already low, the adoption of AI has a 

positive but less pronounced effect. 
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These results suggest that increasing adoption of AI is, and will increasingly be beneficial for 

developing countries characterized by very high maternal mortality rates where current levels of AI 

adoption are low. This is consistent with prior research on AI's positive long-term effects in healthcare 

(Hamet & Tremblay, 2017(Obermeyer et al., 2019)). 

 

Figure 5: Comparison of treated versus control groups in developed and developing countries 

3.3 Panel ARDL modelling  

Table 5a and 5b presents the results for the panel ARDL model assessing the impact of artificial 

intelligence (AI) in robotics flow (aiapflow) on maternal mortality (mmr) across all, developed, and 

developing countries. The analysis distinguishes between short-run (SR), long-run (LR), and 

adjustment (ADJ) effects. For the Adjustment Coefficients (ADJ term) in Table 5a, for developing 

countries, the adjustment term is significant at 5% and negative (-0.2717), indicating that deviations 

from the long-run equilibrium in maternal mortality are corrected by 27% in each period. In developed 

countries, the ADJ term is also significant and negative at both level or log (-0.1336 or -0.0701), 

suggesting a 13.36% or 07.01% correction towards equilibrium per period. For all countries, the 

coefficient is positive (0.0488) but not statistically significant, implying weak or no adjustment in 

global trends. This suggests that in developing countries, there is a slightly faster adjustment towards 

equilibrium after a shock in maternal mortality rates compared to developed countries. Figure 6a, 

showing the cumulative sum (CUSUM), reveals that all the variables fall within the 95% confidence 

band. This indicates that the model parameters remain stable over time, allowing us to conclude that 

the models are reliable. This is further supported by the diagnostic tests results in Table 5b which 

shows that the estimated models can be relayed upon. For instance, the Durbin-Watson (DW) results 

suggest little to no autocorrelation in the majority of the models since most values are close to 2 (e.g., 
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2.288, 2.102, 2.218). The Breusch-Godfrey (BG) Chi2 and p-values indicate no significant serial 

correlation in any of the models. The White’s test indicates no significant heteroskedasticity, implying 

that the error variance is consistent. The Pesaran, Shin, and Smith (PSS F-statistics) and p-values 

confirm the presence of cointegration in most models, implying a stable long-term relationship 

between AI in robotics and maternal mortality across the different countries. 

For the long-run (LR) effects of AI Robotics Flow, in all countries, the coefficient on AI Robotics 

Flow is significant and negative, indicating that an increase in AI robotics flow is associated with a 

reduction in maternal mortality in the long-run. In developing countries, the coefficient is larger and 

more significant, suggesting a stronger long-term reduction in maternal mortality from AI robotics 

flows in developing countries. However, in developed countries, the coefficient is positive but 

insignificant, implying no strong long-run effect of AI robotics flow on maternal mortality.  The 

negative long-run coefficients in developing countries suggest that AI technologies, particularly in 

industrial and service robotics, can reduce maternal mortality over time. This is consistent with 

theories on technological diffusion improving healthcare efficiency and access, especially in labor-

intensive sectors (e.g., obstetric care). AI-driven automation can enhance service delivery, reduce 

human error, and enable better monitoring in healthcare settings. In developing countries, the 

stronger negative long-run effect of AI robotics flow might reflect a "technological catch-up" process. 

The results suggest that developing economies stand to benefit significantly from adopting frontier 

technologies that are already widespread in developed countries as AI-driven innovations can improve 

healthcare systems and infrastructure, reduce barriers to medical access, and support maternal health 

programs (Ramakrishnan et al. 2021; Khan et al., 2022; Panda and Sharma, 2024). 

The positive short-run effects in both global and developing contexts imply potential transitional 

disruptions. This is because according to Panayides et al. (2020) integrating AI systems can initially 

strain existing healthcare structures due to costs, technical challenges, or workforce displacement 

before long-term benefits are realized. The absence of a significant long-run impact in developed 

countries may indicate that AI technologies have reached a saturation point where additional 

investments in AI do not yield substantial improvements in maternal health. Developed countries 

likely already possess advanced healthcare systems, where the marginal effect of new technology on 

health outcomes, such as maternal mortality, diminishes. 

The relationship between AI and health outcomes, such as maternal mortality, aligns with several 

economic and public health theories. For instance, the innovation and public health theory, as 

discussed by Bloom and Canning (2000), argues that technological advancements can enhance public 

health by improving efficiency and accessibility. Similarly, Rogers et al. (2014) diffusion of innovations 

theory explains the differences in impact between developing and developed countries, suggesting 

that the stage of technological adoption and its contextual application influence its effectiveness. 
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Table 5a: Panel ARDL modelling results for the impact of AI in industrial and services 

robotics flow on maternal mortality 

 (1) (2) (3) (4) (5) (6) 

 all countries Developing countries Developed countries 

Variables level log level log level log 

ADJ       
L.mmr 0.0268 0.0488 0.0347** -0.2717** -0.1336*** -0.0701** 
       
 (0.0164) (0.0328) (0.0126) (0.1263) (0.0220) (0.0272) 
LR       
L.aiapflow -0.0289** -0.7092*** -0.0386*** -0.1462*** 0.0013* 0.0504 
 (0.0125) (0.2103) (0.0107) (0.0157) (0.0007) (0.4227) 
SR       
L2D.lmmr    0.3980 -0.0885 0.2909 
    (0.2505) (0.1483) (0.2866) 
L3D.lmmr    0.9369***  0.1254 
    (0.2968)  (0.2455) 
D.aiapflow 0.0008*** 0.0346* 0.0021*** -0.0129 0.0001 -0.0051 
 (0.0002) (0.0182) (0.0006) (0.0154) (0.0001) (0.0267) 
LD.aiapflow   -0.0015** 0.0114 -0.0003** -0.0319 
   (0.0006) (0.0167) (0.0001) (0.0239) 
L2D.aiapflow     -0.0001  
     (0.0001)  
L3D.aiapflow     -0.0001  
     (0.0001)  
Constant -5.0879*** -0.4874* -9.4008*** 1.5030* 0.2323 0.1009 
 (1.3263) (0.2608) (1.6618) (0.7164) (0.3554) (0.2782) 
       
Observations 27 27 26 24 24 24 
R-squared 0.4531 0.1396 0.7290 0.6101 0.8885 0.6457 

Note: *, **, *** denotes the level of significance at 10%, 5%, or 1%, respectively.  Standard errors in parentheses. LR represents the 
long-run results; SR represents the short-run results; ADJ represent the adjustment term. The dependent variable is maternal mortality 
ratio (per 100,000 live births) (mmr). Source: Author’s computations. 

 
 

Table 5b: Diagnostic statistics test results for (AI) in robotics flow and maternal mortality 
model 

 All countries developing Developed  

 non-logged logged non-logged logged non-logged logged 

Durbin-Watson 
(DW) 

2.288 2.102 2.032 2.218 1.448 1.782 

BG Chi2 0.943 1.952 0.022 2.154 1.362 0.653 
BG P>Chi2 0.331 0.162 0.882 0.142 0.243 0.419 
White Chi2 19.15 22.84 14.52 24.00 9.99 5.97 
White P>Chi2 0.512 0.297 0.803 0.404 0.351 0.310 
PSS F 9.943*** 1.947*** 19.222*** 6.486*** 25.023*** 5.876*** 
PSS p-val I(0)  0.004 0.431 0.000 0.030 0.000 0.042 
PSS p-val I(1)  0.008 0.555 0.000 0.057 0.000 0.076 

Note: *, **, *** denotes the level of significance at 10%, 5%, or 1%, respectively. Source: Authors’ computations 
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All countries Developing countries 

 
 

Developed countries 

 
Figure 6a: CUSUM graphs for AI Robotic flows 

 

Panel ARDL modelling results and discussion for the impact of artificial intelligence (AI) in robotics stock on 

maternal mortality  

Table 6a and 6b presents panel ARDL (Auto-Regressive Distributed Lag) modeling results on the 

impact of artificial intelligence (AI) in robotics stock (aiapstock) on maternal mortality across global, 

developed, and developing countries. From Table 6a, the adjustment coefficients for maternal 

mortality are positive in all groupings and significant at various levels, indicating a degree of inertia in 

maternal mortality rates. This implies that after any deviation from the long-run equilibrium due to 

changes in AI robotics stock, the rate of adjustment back towards equilibrium is noticeable and faster 

especially in all countries and developing countries. Figure 6b, which displays the cumulative sum 

(CUSUM), shows that not all variables remain within the 95% confidence band, as some portions fall 

outside of it for both all countries and developed countries. Despite this, the model parameters can 

still be relied upon, allowing us to conclude that the models are fit for interpretation. This is also 

supported by the diagnostic tests results in Table 6b which demonstrate that the models are generally 

well-specified, with minor issues of heteroscedasticity in some cases. For example, the Durbin-Watson 

and Breusch-Godfrey tests suggest that there is no major issue of autocorrelation in the residuals of 

most models. This is important because the presence of autocorrelation could bias the model's 

standard errors and lead to misleading inference. The White test indicates heteroscedasticity in some 
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models, particularly in the logged models for all countries and developed countries. While the 

significant PSS F-statistics across all models indicate that there is a long-run relationship between the 

maternal mortality ratio (mmr) and AI (robotics stock) variables. This means that the variables move 

together over time, and deviations from the long-term equilibrium are corrected in the future. The 

long-run relationship between maternal mortality and AI is robust, and the results support the 

hypothesis of cointegration, meaning AI advancements are likely to have long-term implications for 

maternal mortality across different country groups.  

Focusing on our variable of interest, at global level, in the long-run, AI robotics stock has a statistically 

significant negative impact on maternal mortality in all countries. This implies that as AI technologies 

in industry and services expand, maternal mortality decreases globally. Specifically, a 1-unit increase 

in aiapstock reduces the maternal mortality ratio (mmr) by 0.0042 units (level) or 0.8390% (log). The 

short-run impact also shows a significant and positive effect on reducing maternal mortality, 

particularly in the log model (0.1158), highlighting the immediate benefits of AI adoption. AI-

enhanced medical technologies and automation can improve healthcare delivery, especially in obstetric 

care, leading to better maternal health outcomes. Technologies such as AI-driven diagnostic tools or 

automated surgical robots may lower mortality by addressing complications more effectively. 

For the developing Countries (see Columns 3 and 4), in the long-run, the results are mixed. In the 

level model, there is a significant negative long-run impact of AI robotics stock on maternal mortality 

(0.0108), but the log model shows no significance. This suggests that the level of AI stock influences 

maternal mortality in developing countries, though the impact may not be logarithmic. In the short 

run, AI robotics stock shows significant negative impacts (both at first and second lags), suggesting 

that the adoption of AI technologies has immediate and persistent effects in reducing maternal 

mortality in developing countries. The impact of AI on healthcare may be more noticeable in 

developing countries due to the large gaps in healthcare access and quality. Introducing AI 

technologies can bridge these gaps by providing advanced diagnostic tools, telemedicine, and efficient 

healthcare services, leading to reduced mortality rates. However, the lower log results indicate that AI 

penetration might not be widespread enough to create logarithmic scale effects. The results can be 

interpreted within the framework of the Grossman (2017) health production function, which views 

health outcomes as a function of various inputs, including technology. AI robotics, as a technological 

input, enhances healthcare production, by reducing maternal mortality. This aligns with the findings 

of Alami et al. (2020), Nti et al. (2023), Shrivastava et al. (2023), and Zuhair et al. (2024), which 

highlight the positive effects of AI in healthcare on reducing mortality rates in developing regions. 

For the Developed Countries (see Columns 5 and 6), in the long-run, there is no significant long-run 

relationship in the level model, but the log model shows large variability (insignificant). This could 

indicate that AI robotics stock does not influence maternal mortality significantly in developed 

countries in the long term, likely due to already high standards of healthcare. While in the short-run, 

some lagged terms for AI robotics stock show significant negative coefficients (LD.aiapstock, 

L2D.aiapstock, L3D.aiapstock), implying that AI technologies have more short-term effects in 

developed countries. This might be due to the integration of cutting-edge AI technologies that 

enhance short-term medical interventions. The intuition behind these results is that developed 

countries may already have robust healthcare systems, so AI's long-run effect on maternal mortality 

may be minimal. However, in the short run, new AI technologies could still enhance operational 

efficiency, resource allocation, or emergency response in maternal healthcare. The differing impacts 
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of AI between developed and developing countries align with economic convergence theory, which 

suggests that less developed nations can experience more pronounced benefits from adopting 

advanced technologies (Mouteyica and Ngepah, 2023a, 2023b). Developing countries, with lower 

baseline healthcare standards, may gain significantly more from AI integration compared to developed 

countries. 

 

Table 6a: Panel ARDL modelling results for the impact of artificial intelligent (AI) in 

industrial and services robotics stock on maternal mortality 

 (1) (2) (3) (4) (5) (6) 
 all countries Developing Developed 
Variables level log level log level log 

ADJ       
L.mmr 0.0387** 0.1381*** 0.0337** -0.1395 -0.0508** 0.0383 
 (0.0159) (0.0390) (0.0121) (0.1753) (0.0227) (0.0404) 
LR       
L.aiapstock -0.0042*** -0.8390*** -0.0108* -0.1093 0.0028 -4.8868 
 (0.0011) (0.0718) (0.0056) (0.0956) (0.0017) (3.7848) 
SR       
LD.lmmr    0.0146 -0.6682*** -0.4546* 
    (0.2707) (0.1298) (0.2301) 
L2D.lmmr    0.3786 -0.3283** 0.1430 
    (0.2555) (0.1122) (0.2320) 
L3D.lmmr    0.7905**  0.3188 
    (0.3016)  (0.2096) 
D.aiapstock 0.0002*** 0.1158*** 0.0018*** -0.0081 0.0000 -0.1528 
 (0.0000) (0.0296) (0.0006) (0.0721) (0.0001) (0.2058) 
LD.aiapstock   -0.0023*** -0.1331* -0.0003*** -0.5995** 
   (0.0008) (0.0735) (0.0001) (0.2433) 
L2D.aiapstock     -0.0002**  
     (0.0001)  
L3D.aiapstock     -0.0002**  
     (0.0001)  
Constant -6.7561*** -1.6960*** -9.2775*** 0.7979 -3.3681*** -1.9870** 
 (1.4141) (0.4350) (1.6000) (1.0579) (0.7907) (0.6855) 
       
Observations 27 27 26 24 24 24 
R-squared 0.5465 0.3959 0.7522 0.6218 0.9507 0.7686 

Note: *, **, *** denotes the level of significance at 10%, 5%, or 1%, respectively.  Standard errors in parentheses. LR represents the 
long-run results; SR represents the short-run results; ADJ represent the adjustment term. The dependent variable is maternal mortality 
ratio (per 100,000 live births) (mmr). Source: Author’s computations. 

 

Table 6b: Diagnostic statistics test results for (AI) in robotics stock and maternal mortality 
model 

 All countries developing Developed  

 non-logged logged non-logged logged non-logged logged 

DW 2.070 2.082 2.058 2.324 1.933 2.080 
BG Chi2 0.189 0.919 0.043 3.091 0.031 0.616 
BG P>Chi2 0.663 0.338 0.836 0.079 0.860 0.432 
White Chi2 9.37* 18.89*** 9.35 24.00 24.00 24.00 
White P>Chi2 0.095 0.002 0.808 0.404 0.404 0.404 
PSS F 14.463*** 7.863** 9.102** 7.037** 64.961*** 16.453*** 
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PSS p-val I(0)  0.000 0.012 0.007 0.023 0.000 0.001 
PSS p-val I(1)  0.001 0.023 0.014 0.044 0.000 0.001 

Note: *, **, *** denotes the level of significance at 10%, 5%, or 1%, respectively. Source: Author’s computations. 
 
 

All countries Developing countries 

 
 

Developed countries 

 
Figure 6b: CUSUM graphs for AI Robotic stock 

 

Fixed effect regression results and discussion for the impact of artificial intelligence (AI) on maternal mortality  

For all countries (Columns 1 & 2) in Table 7, AI stock coefficient (-0.00003) is statistically significant 

at the 5% level, suggesting that an increase in AI stock is associated with a marginal decrease in 

maternal mortality rates. The negative relationship indicates that higher AI stock, which represents 

the accumulation of industrial and service robotics, contributes to improving maternal health 

outcomes by reducing maternal mortality. The coefficient (-0.00013) of AI flow is also significant at 

the 5% level, showing that the flow of AI (i.e., the yearly introduction of new AI technologies) has a 

stronger negative effect on maternal mortality than AI stock. This implies that ongoing advancements 

in AI technology and their applications, particularly in healthcare services, might be more impactful 

in reducing maternal deaths. This finding aligns with the studies of Davies (2019), Chattu (2021), Kaur 

et al. (2021), Morley et al. (2024), Silcox et al. (2024), Olorunsogo et al. (2024), and others. 
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For developing countries (Columns 3 & 4), the coefficient (-0.00005) of AI stock is significant at the 

10% level. This reinforces the idea that in developing countries, increased AI stock helps reduce 

maternal mortality, though the effect is slightly larger than in the overall sample. The use of AI in 

maternal health services (such as robotic-assisted procedures and diagnostics) could help overcome 

gaps in healthcare infrastructure. The coefficient (-0.000152) of AI flow is also significant at the 10% 

level, showing a stronger reduction in maternal mortality in developing countries compared to 

developed ones. New AI innovations seem to be more effective at addressing healthcare deficiencies, 

possibly through cost-effective diagnostic tools and telemedicine solutions. The significant negative 

coefficients for AI stock and AI flow in developing countries suggest that AI technologies can fill 

critical gaps in healthcare systems where maternal mortality is high. AI applications, such as automated 

diagnostics, telemedicine, and AI-based training for healthcare workers, provide efficient and scalable 

solutions in regions where access to skilled medical personnel is limited. Studies by Wahl et al. (2018) 

emphasize that AI has the potential to revolutionize healthcare in developing regions by providing 

affordable access to high-quality care through AI-driven diagnostics and predictive analytics. These 

findings align with the theory of technological leapfrogging, which posits that developing nations can 

benefit more from newer technologies than developed countries with already advanced infrastructures 

(Steinmueller, 2001). 

For developed countries (Columns 5 & 6), the coefficient (0.000023) for AI stock is positive but not 

significant, implying no clear relationship between AI stock and maternal mortality in developed 

countries. This might suggest that AI stock, while beneficial in other sectors, has a limited incremental 

effect on maternal health in countries with already advanced healthcare systems. While the coefficient 

(0.000049) for AI flow is positive but also not significant, indicating that the introduction of new AI 

technologies might not have a discernible impact on reducing maternal mortality in developed 

countries, possibly because these countries already have well-established maternal healthcare 

infrastructure and access to skilled medical staff. In these nations, where healthcare systems are already 

robust, the integration of AI technologies is more likely to enhance efficiency rather than directly 

reduce mortality. This supports the theory of diminishing returns to technology adoption—once a 

certain level of technological saturation is reached, further advancements yield less substantial 

improvements (Rosenberg, 1976). 

Table 7: Fixed effect regression results (forecast) 
 (1) (2) (3) (4) (5) (6) 
 All countries Developing Developed 
Variables AI stock AI flow AI stock AI flow AI stock AI flow 

AI stock  -0.00003**  -0.00005*  0.000023  
 (0.00001)  (0.00002)  (0.000017)  
AI flow  -0.00013**  -0.000152*  0.000049 
  (0.00006)  (0.000088)  (0.000096) 
ha_ind -5.48207*** -5.52103*** -5.478213*** -5.567772*** -4.370444*** -4.189829*** 
 (0.92313) (0.91457) (2.10145) (2.098164) (0.843351) (0.841969) 
oca_bsw -2.66166*** -2.65660*** -2.78832*** -2.790786*** 0.457653 0.406633 
 (0.10833) (0.10832) (0.15677) (0.156862) (0.352817) (0.351136) 
cm_ind -1.64990 -1.65288 -0.93356 -1.034104 -4.724388* -4.706678* 
 (2.22262) (2.22021) (3.98890) (3.989495) (2.541885) (2.546307) 
Cons. 287.33172*** 286.66343*** 314.65147*** 314.73471*** -35.271658 -30.051272 
 (10.52861) (10.52733) (14.80255) (14.81535) (35.458956) (35.279466) 
       
Obs. 709 709 233 233 476 476 
R-sq. 0.52 0.52 0.64 0.64 0.078 0.08 
Num. of cid 62 62 28 28 34 34 
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Log Lik -2346 -2345 -842.5 -842.7 -1404 -1405 
Note: *, **, *** denotes the level of significance at 10%, 5%, or 1%, respectively. Source: Author’s computations. 
 

Oxford Economics (2019) has highlighted the remarkable three-fold increase in the number of robots 

in use worldwide, at 2.25 million in 2018. The same report projects that by 2030, the global stock of 

robots will reach 20 million. This will translate into about 19% growth rate. We use this growth rate 

to expand the yearly flows and stocks of industrial and service robots to 2035. It is noteworthy that 

this applied growth rate is conservative as World Robotics (2023) reports that the worldwide sales of 

professional service robots grew by 48% in 2022. 

Actual data spanning 1993 and 2020 is used to estimate panel fixed effects models of the effects of 

industrial and service robots (AI stock and AI flow) on maternal mortality ratios (MMR) across 

various country groupings—global, developing, and developed countries. The graphs in Figure 7 are 

based on fixed-effects (FE) regression models that control for health access, obstetric care, and 

comorbidities, while the AI indicators (stock and flow) serve as key independent variables. The 

forecast holds all other control variables at their 2018-2020 mean values, leaving only AI indicators 

to vary. The forecasts are fairly accurate as the 95% confidence intervals (shaded grey area) around 

the forecast indicate a reasonably narrow range, especially in developed countries. 

 

 
Figure 7: forecast graphs of the impact of AI robotics on maternal mortality 

Robotics flow forecast a slightly stronger impact on maternal mortality than the stock. Globally, The 

maternal mortality rate (MMR) shows a clear declining trend in both AI stock and AI flow forecasts. 

Actual values (blue line) remain relatively stable from 1990 to 2020, but the forecast (red line) shows 

a marked decline in MMR from 2020 onwards. By 2035, MMR values drop to below 20 per 100,000 

live births. In developing countries, the MMR shows a steeper initial decline. For both AI stock and 
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AI flow, the forecast suggests a continuous reduction, reaching levels below 50 MMR by 2030. The 

declining trajectory is slightly more pronounced in the AI flow model compared to the AI stock 

model. Given that developed countries already have a low MMR (below 20 per 100,000), the forecast 

shows only a modest further reduction. The AI stock model shows almost no further decline from 

2020 to 2035, while the AI flow model shows a slight reduction, though MMR remains below 10 in 

developed countries. 

 

4. Conclusion 

The conclusion of this research study highlights the transformative potential of artificial intelligence 

(AI) in reducing maternal mortality, particularly in the context of Sustainable Development Goal 3.1. 

The study utilizes a range of econometric techniques, including Difference-in-Differences (DiD), 

Dynamic Panel ARDL, and fixed effects regression, to assess the effects of AI on maternal health 

outcomes across 70 countries, divided into developed and developing regions. 

The findings demonstrate that AI, particularly in the form of industrial and service robotics, has 

significant potential to reduce maternal mortality globally, with a more pronounced impact in 

developing countries. The study shows that countries with higher AI adoption, particularly in 

healthcare, exhibit lower maternal mortality rates. This effect is more substantial in developing 

nations, where healthcare infrastructure is often weaker and maternal mortality rates are higher. The 

research underscores the importance of integrating AI technologies to bridge healthcare gaps and 

improve access to maternal health services. 

In developed countries, while the overall maternal mortality rates are already low, the adoption of AI 

technologies continues to have a positive, though less pronounced, impact. The study attributes this 

to the already advanced healthcare systems in these countries, where the marginal benefits of AI are 

limited compared to developing regions. 

 

Key Policy Recommendations 

Governments in developing countries should prioritize investments in AI technologies, specifically in 

maternal healthcare, to address high maternal mortality rates. This includes promoting the use of AI-

powered diagnostics, telemedicine, and AI-assisted healthcare worker training to improve healthcare 

outcomes in resource-constrained settings. 

To maximize the benefits of AI, countries should invest in the necessary digital infrastructure, 

including robust internet connectivity, digital literacy programs, and AI research and development. 

This is crucial for enabling the effective integration of AI in healthcare systems, especially in 

developing nations. 

Policymakers in developing countries should leverage AI technologies to leapfrog traditional barriers 

in healthcare, allowing for faster adoption of advanced diagnostic and treatment tools. This can help 

address critical gaps in healthcare access and quality, particularly in rural and underserved areas. 

Governments and international organizations must ensure that AI technologies do not exacerbate 

existing inequalities in healthcare. Policies should be designed to make AI tools affordable and 

accessible to all populations, particularly those in low-income and rural areas. 
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Caveats and Areas for Further Research: 

The study relies on AI robotics flow and stock data, which may not fully capture all dimensions of 

AI's impact on healthcare. Further research should explore additional AI applications, such as 

machine learning models and AI-driven healthcare interventions. While AI demonstrates strong 

potential in reducing maternal mortality, its success depends on local healthcare contexts.  

Future research should investigate how factors such as healthcare worker skills, cultural practices, and 

regulatory environments influence the effectiveness of AI in different regions. AI adoption in 

healthcare, particularly in developing countries, may face challenges such as costs, lack of technical 

expertise, and resistance from healthcare workers. Further research is needed to identify strategies for 

overcoming these barriers and ensuring the smooth integration of AI technologies in healthcare 

systems. The study highlights the short-term and long-term benefits of AI, but more longitudinal 

studies are needed to understand the sustained impact of AI on maternal mortality and other health 

outcomes over extended periods. 

Overall, the integration of AI in healthcare presents a promising avenue for reducing maternal 

mortality and improving health outcomes globally, particularly in developing countries. However, 

careful attention must be paid to infrastructure, equitable access, and long-term sustainability to fully 

realize the benefits of AI in maternal healthcare. 
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Appendix: AI robots usage country list by levels of development 

Developing Developed 

Argentina Australia 

Brazil Austria 

Chile Belarus 

China Belgium 

Colombia Bosnia and Herzegovin 

Costa Rica Bulgaria 

Denmark Canada 

Egypt Czechia 

India Estonia 

Indonesia Finland 

Iran (Islamic Republi France 

Kuwait Germany 

Malaysia Greece 

Mexico Hungary 

Morocco Iceland 

Oman Ireland 

Pakistan Israel 

Peru Italy 

Philippines Japan 

Puerto Rico Latvia 

Qatar Lithuania 

Saudi Arabia Malta 

Sierra Leone Netherlands (Kingdom 

Singapore New Zealand 

South Africa Norway 

Thailand Poland 

Tunisia Portugal 

TÃ¼rkiye Republic of Korea 

United Arab Emirates Republic of Moldova 

Uzbekistan Romania 

Venezuela (Bolivarian Russian Federation 

Viet Nam Serbia 

 Slovakia 

 Spain 

 Sweden 

 Switzerland 

 Ukraine 

 United Kingdom of Gre 

 United States of Amer 

 

 

 


