AII #	comments will b Paper Line # (if applicable)	-	protected information, or any information Comment (Include rationale for comment)	t include confidential business or personal information, otherwise sensitive or you do not wish to be posted. Suggested change
1	General comment	General Comment	Meaningfully explainable AI requires more than just explanations on the algorithms outputs. Often, information about the provenance of training datasets and individual data points, as well as information about collection methods, can be very helpful for understanding the output of a system. For example, if an image recognition system is trained to identify cardinals, but is only given training images of a cardinal that were captured in summer in low resolution and some similar looking species' pictures were captured in winter and higher-resolution, this may help "explain" why that system incorrectly identifies cardinals as that other species when shown in a winter setting. Likewise, knowing if supervised labels in a dataset came from a particular special interest group's perspective on the topic can elucidate systematic understandings of the way the algorithm might replicate that perspective.	We recommend NIST include discussion of the importance of providing transparent information and metadata about how a system was developed and trained. For example, NIST may cite efforts like Google model cards or the ABOUT ML project at the Partnership on AI and their value to improving explainable AI.

			In addition to the way explainable AI can "influence	Recommend adding a new sentence following the sentence ending in "perception
2	125-132	1		of the system." on line 132 that states: "Further, the explainable outputs of systems may help recipients identify underlying problems in the algorithm or the training data and thus improve the resiliency, reliability, and accountability of the system." This will allow the paragraph to flow into the next paragraph, and highlight the value of explainable AI to the development of safe AI systems.
3	160-163	2	This definition of "output" should be expanded to better capture the functions of AI agents, in addition to those from analytical recommendation systems. The current definition suggests outputs only come from a "query to an AI system." However, AI agents do not produce a single output in response to a query, rather, they produce a series of actions in response to provided command or goal. Thus, the "outputs" of AI agents should include the stream of consequential actions and decisions an agent may make in its environment.	Edit line 160 to say (italics represent existing text): <i>The output is the result of a query to an AI system or the consequential actions</i> taken by an AI agent in response to a given command or goal. Include a new example following the end of line 163, stating: "For an autonomous vehicle, the output is the series of actions it takes in response to a driver's command."
4	229-244	2.4	We strongly support NIST's insightful inclusion of "Knowledge Limits" as one of the four principles. We believe this principle, as helpfully articulated by NIST, is often neglected in other discussions about explainable AI, and it is perhaps the most important principle offered in the document. Knowledge Limits is essential for the safe and ethical implementation of AI systems into the real world	
5	375-379	5	It should be mentioned that more useful variants show the top few such counterfactual examples for different classes or features.	Following the end of the sentence in line 379, "different decision" add a sentence that says "Some systems can also produce multiple counterfactual examples for different classes or features, which can provide a more meaningful explanation of the output."

6	399-402	5	explanation accuracy, the research highlighted in section 5.4 (Adversarial Attacks on Explainability) can likely be	NIST should add a sentence following "how the trained models differ" on line 404 to say: "Continued research on adversarial attacks on explainability, as discussed later in Section 5.4, can also be repurposed to provide techniques that can be used for quantification of explanation integrity."
---	---------	---	--	--

			We believe this section is critical and can be improved	We recommend rewriting and replacing lines 403-406 with the following.
			with further discussion. First, NIST should consider	
			directly highlighting the need for additional investment	"Algorithmic systems that understand their knowledge limits and declare when a
			and research "on developing algorithms that understand	validly-formatted data input is out of their scope are not prevalent today, but
			their knowledge limits" (403-404). Second, NIST can	research from multiple subfields of AI can be brought to bear to meet this
			identify some relevant subfields in the AI literature, such	principle.
			as confidence representation, metauncertainty,	
			distributional shift detection, out-of-distribution	Knowledge limits have a significant history of being addressed in the literature, but
			detection, open world reasoning, and declarative	not often under the term 'knowledge limits', and not as a single subfield. For
			ontologies.	example, research on quantification of uncertainty
				(https://ieeexplore.ieee.org/document/8825816), metareasoning about
			Communicating to a user the nature and size of the	uncertainty (https://www.ijcai.org/Proceedings/15/Papers/229.pdf),
		_	uncertainties that bore on an output helps them	quantification of ambiguity
7	403-406	5	contextualize and calibrate usage of the system overall as	(https://www.aaai.org/Papers/Symposia/Spring/2008/SS-08-03/SS08-03-002.pdf),
			well as each of its outputs individually.	and manifold characterizations (https://arxiv.org/pdf/1805.11783.pdf) are directly
				relevant to modeling knowledge limits. The framing of knowledge limits as one
			In the case of a typical learned classifier, though it	concept and as a principle for explainable AI promotes a cohesive understanding
			implicitly respects the open-world assumption regarding	and communication of a system's limits. Systems that can clearly communicate
			properties of the instances it may encounter, it implicitly	where their uncertainties are have been shown to help users calibrate and build
			enforces an unreliable closed-world assumption	their trust (https://www.cell.com/patterns/pdf/S2666-3899(20)30060-X.pdf) in
			(https://link.springer.com/chapter/10.1007/978-1-349-	such systems rapidly.
			13277-5_4) regarding the semantics of its inference and	
			outputs: i.e. a tautological disjunction of its training	In the simplest case, it is common for models to output real-valued probabilities or
			classes.	scores rather than hard decisions, which reflect the algorithms' confidences in
				their predictions. Just giving such a real-valued output or even a probability,
			Many modern learning algorithms can be expressed as	however, should be considered inadequate to meet this principle because many
			Initiany modern learning algorithms can be expressed as	nowever, should be considered inadequate to meet this principle because many

8	491	5.2	It would be helpful to include mention of and citation to global explainable AI algorithms for deep reinforcement learning systems.	Add discussion and reference to the research on this topic. For example, see new research: Heuillet, A., Couthouis, F., Díaz-Rodríguez, N. (2020). Explainability in Deep Reinforcement Learning, https://arxiv.org/pdf/2008.06693.pdf
9		6	reader to imply that human-level is an acceptable threshold or standard for explainable AI. Rather, human- level performance should be a "benchmark" but not an	Include a new sentence following "conclusions are largely unreliable" (line 561) that reads "Though it is helpful to identify these problems in human-produced explanations, this should not be meant to imply that replication of similar problems in explainable AI would be acceptable, nor that exceeding human-level performance is an appropriate threshold for using explainable AI systems." Rewrite the reference to human-level performance serving as a benchmark to AI systems in line 548-549 to read "and to provide a possible baseline, but not threshold of acceptability, for explainable AI systems," Rewrite the reference to benchmark on line 561-562 to read: "Humans as a comparison group for explainable AI can partially inform the development of benchmark metrics for explainable AI systems, though alternate metrics representing more useful higher standards should also be developed (https://uwspace.uwaterloo.ca/bitstream/handle/10012/15922/Lin_ZhongQiu.pdf);" Rewrite the reference to benchmark on line 700 to read "This provides a baseline benchmark, but not an acceptable threshold or exclusive standard, with which to compare AI systems."