Scalable agent alignment

Jan Leike · BAGI 2019
What we want from ML

move 37

circling boat
What we want from ML

move 37

circling boat
The agent alignment problem

How can we create agents that *behave* in accordance with the user's intentions?
“Preference payload” questions

- Whose preferences should the agent be aligned to?
- How should preferences of different users be aggregated?
- How should they traded off against each other?
- When should the agent be disobedient?
“Preference payload” questions

- Whose preferences should the agent be aligned to?
- How should preferences of different users be aggregated?
- How should they be traded off against each other?
- When should the agent be disobedient?

These questions are important.

We’re not discussing these questions here.

We’re only considering the technical problem of aligning one agent to one user.
Desiderata

Economical

Scalable

Image sources:
https://www.porttechnology.org/
https://realanimetraining.com/
@janleike
Assumption 1

Rather than **formally specifying** user intentions, we can instead **learn** these intentions to a sufficiently high accuracy.
Assumption 2

For many tasks, **evaluation** of outcomes is **easier than** producing the correct **behavior**.
Evaluation is easier than behavior
Reward modeling
Reward modeling

What?

How?

Agent

User

Environment

@janleike
Some tasks are hard to evaluate
Evaluation assistance tasks

- Well-written
- Novel
- Experiments correct
- Proofs correct

...
Evaluation assistance tasks

- Well-written
- Novel
- Experiments correct
- Proofs correct
- ...

LETTER

Human-level control through deep reinforcement learning

Valentin Gheondea, Konstantin Kavukcuoglu, Darko Silver, Andrey A. Rusu, Joel Veness, Marc G. Bellemare, Alex Spiler, Martin Abbeel, Andreas H. C. Turchetta, Marc H. van Leijenhorst, Dario Amodei, Jonas Schneider, Shane Legg, & Demis Hassabis

"The theory of reinforcement learning provides a normative account of how agents optimize their control of an environment. To our reinforcement learning community, this is an exciting and ambitious undertaking. However, agents are confronted with a difficult task: they must devise efficient representations of the environment from high-dimensional sensory inputs, and use these to generate good actions in new situations. Fortunately, human and animal actions serve to shape their environment by acting on it. In deep learning, the agent is faced with a much more difficult problem: it must represent the environment by making the right observations and then acting on it. Our work is a step in this direction: we demonstrate that a deep Q-network agent, trained only on the inputs and the game scores as inputs, is able to surpass the performance of all previous algorithms and achieve a level of performance that is comparable to that of professional human players in the challenging domain of Atari 2009 games."
Evaluation assistance tasks

- Well-written
- Novel
- Experiments correct
- Proofs correct

...
Recursive reward modeling
Recursive reward modeling
Challenges

- Amount of feedback
- Feedback distribution
- Reward hacking
- Unacceptable outcomes
- Reward-result gap
Challenges

- Amount of feedback
- Feedback distribution
- Reward hacking
- Unacceptable outcomes
- Reward-result gap
Challenges

- Amount of feedback
 - Online feedback
 - Off-policy feedback
 - Leveraging existing data
 - Hierarchical feedback

- Feedback distribution
 - Natural language
 - Model-based RL
 - Side-constraints
 - Adversarial training

- Reward hacking
 - Uncertainty estimates
 - Inductive bias

- Unacceptable outcomes

- Reward-result gap
Establishing trust

- Design choices
- Testing
- Interpretability
- Formal verification
- Theoretical guarantees

Safety certificates
Thanks! :)

Blog post: https://goo.gl/azGMtA

Scalable agent alignment via reward modeling: a research direction

Jan Leike
DeepMind
David Krueger
DeepMind
Milan
Tom Everitt
DeepMind
Milan
Vishal Maini
DeepMind
Shane Legg
DeepMind

Abstract

One obstacle to applying reinforcement learning algorithms to real-world problems is the lack of suitable reward functions. Designing such reward functions is difficult in part because the user only has an implicit understanding of the task objective. This gives rise to the agent alignment problem: how do we create agents that behave in accordance with the user’s intentions? We outline a high-level research direction to solve the agent alignment problem centered around reward modeling: learning a reward function from interaction with the user and optimizing the learned reward function with reinforcement learning. We discuss the key challenges we expect to face when scaling reward modeling to complex and general domains, and concrete approaches to mitigate these challenges, and ways to establish trust in the resulting agents.

1 Introduction

Games are a useful benchmark for research because progress is easily measurable. Atari games come with a score function that captures how well the agent is playing the game; board games or competitive multiplayer games such as Dota 2 and Starcraft II have a clear winner or loser at the end of the game. This helps to determine empirically which algorithmic and architectural improvements work best.

However, the ultimate goal of machine learning (ML) research is to go beyond games and improve human lives. To achieve this we need ML to assist us in real-world domains, ranging from simple tasks like ordering food or answering emails to complex tasks like software engineering or running a business. Yet performance on these and other real-world tasks is not easily measurable, since they do not come readily equipped with a reward function. Instead, the objective of the task is only indirectly available through the intentions of the human user.

This requires walking a fine line. On the one hand, we want ML to generate creative and brilliant solutions like AlphaGo’s Move 37 (Metc, 2016)—a move that no human would have recommended, yet it completely turned the game in AlphaGo’s favor. On the other hand, we want to avoid degenerate solutions that lead to undesirable behavior like exploiting a bug in the environment simulator (Clark & Anand, 2016; Lehman et al., 2018). In order to differentiate between these two outcomes, our agent needs to understand the user’s intentions, and robustly achieve these intentions with its behavior. We frame this as the agent alignment problem.

How can we create agents that behave in accordance with the user’s intentions?