Technical Workshop Summary

David Krueger, Mila / University of Montreal
Overview: Human-in-the-Loop approaches to AI safety

- **Super-human feedback:**
 - Amanda Askell (OpenAI): Iterated amplification / debate
 - Jan Leike (DeepMind): Recursive reward modeling
- Dylan Hadfield-Menell (Berkeley/CHAI): Cooperative IRL (and **related insights**)
- Eric Drexler (FHI): The comprehensive AI services framework:
Overview: Theory approaches to AI safety

- Scott Garrabrant (MIRI): Agent Foundations
- Victoria Krakovna (DeepMind): Side Effects / Impact Measures
- Ramana Kumar (DeepMind): Verification / Security
Iterated Amplification and Debate

Amanda Askell, OpenAI
Claim: human feedback is not scalable!

Example problems which require different kinds of training signal

<table>
<thead>
<tr>
<th>Training Signal</th>
<th>Algorithmic</th>
<th>Human</th>
<th>Beyond Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supervised Learning</td>
<td>Learning Data Structures</td>
<td>Image Classification</td>
<td>Long-term Prediction</td>
</tr>
<tr>
<td>Reinforcement Learning</td>
<td>Playing Games</td>
<td>Driving “Well”</td>
<td>Designing Transit System</td>
</tr>
</tbody>
</table>
How can we get “super-human feedback”?

- Key insight: AI can help humans evaluate things!
- Examples:
 - Debate (Irving et al, 2018): Two AIs compete to convince a human judge of their stance.
 - Amplification (Christiano et al, 2018): Human decomposes a question into sub-questions that AI helpers are able to answer

- Consider the question: “Will this proposed traffic system be safer and cheaper than the current system?”
Scalable agent alignment

Jan Leike · BAGI 2019
Reward modeling

- **Goal**: solve all specification problems
- **Approach**:
 - Encode tasks as reward functions
 - Learn these reward functions from human feedback
Recursive reward modeling
Challenges

- Amount of feedback
- Feedback distribution
- Unacceptable outcomes
- Reward-result gap
Cooperative Inverse Reinforcement Learning (CIRL)

Dylan Hadfield-Menell, CHAI/Berkeley
What is CIRL?

- Reinforcement Learning: a definition of **individual** rationality for an **AI** system
 - Can be **dangerous** due to **instrumental goals**
- Cooperative Inverse Reinforcement Learning (CIRL): a definition of **joint** rationality for an **AI+human system**
- **Machine learning** = **programming by incentive**
 - **Goal**: a system with the **intended behavior**
- **Vision**: figure out how to “steer clear” of convergent rationality “attractors” during AI training
The Comprehensive AI Services framework

Eric Drexler
Future of Humanity Institute
University of Oxford

Beneficial AGI Workshop
3 January 2019
Puerto Rico

> FHI TECHNICAL REPORT <

Reframing Superintelligence
Comprehensive AI Services as General Intelligence
K. Eric Drexler
Technical Report #2019-1
Claims of Comprehensive AI Services (CAIS)

- N.B. CAIS is a framework, not a blueprint
 - Let’s change the way we’re thinking about AGI!
- People want AIs to perform services ⇒ no need to AGI agents
- Talking about “the AI” is misleading
 - AI systems will be modular
 - AI services will be resource-bounded and time-bounded tasks
- Comprehensive: Anything we want AGI for can be provided this way
 - That includes designing better AI systems → recursive self improvement
- Not a solution of safety, a way of approaching safety problems (both technical and societal)
Descriptive and prescriptive...

Description:
Consider patterns of system development and structure

Prescription:
Exploit affordances of system development and structure
Embedded Agency

Abram Demski & Scott Garrabrant
Scott Garrabrant: Embedded Agency

- Main point: Reinforcement learning is a *leaky abstraction*; it assumes that the agent and environment only interact via a well-defined interface:
In physical reality, AI agents are *embedded* within the environment, and thus:

- do not have well-defined i/o channels;
- are smaller than their environment;
- are able to reason about themselves and self-improve;
- and are made of parts similar to the environment.
Scott Garrabrant: Embedded Agency

- This underlies MIRI’s technical AI safety research on “agent foundations”.

... et cetera ...

Measuring side effects
Victoria Krakovna
Victoria Krakovna: Relative reachability

Goal: how to formally define *side effects*: Disruptions to the agent's environment that are *unnecessary* for achieving the objective

Breaking the vase is **unnecessary** for delivering the box

Breaking eggs is **necessary** for making omelette
Contribution: Desiderata for a side effects measure

1. **Generality**: not task/environment-specific

2. **Granularity**: more side effects \Rightarrow larger penalty

3. **No interference incentive**: penalize only the agent’s effects, not arbitrary changes (e.g. effects of humans’ actions)

4. **No offsetting incentive**: does not incentivize the agent to undo the effects of achieving an objective.

 Example: “If I hadn’t fetched your notebook, it would still be outside getting rained on, so I’d better pour water on it”

5. ... ?
Contribution: Relative reachability

Generic side effects measure =

\[
(\text{baseline state } S_t', \text{ deviation measure } d(S_t; S_t'))
\]

- **Relative reachability:**
 - \(d(S_t; S_t') = \sum_s \max(R(S_t' \rightarrow s) - R(S_t \rightarrow s), 0) \)
 - Penalizes making states \(s \) **less reachable** than they would be from the baseline
 - Satisfies all the desiderata! (with “step-wise” baseline state)
 - ...but could be difficult/intractable to compute
Ramana Kumar: Verification for boxing (and more!)

Containment (aka Boxing)

- Uses: experiments on Proto-AGI, and as a fallback.
- Not a complete solution to control.
Counterfactual Oracle Box

What would it take to build an oracle AI we can rely on?

- **Oracle AI** = Question answering system
 - **Problem:**
 - incentives to affect the world, e.g. via
 - system hacks (answer breaks infrastructure)
 - mind hacks (answer tricks/tempts its readers)

- **Counterfactual Oracle AI** (Armstrong): fix the incentives
 - **Only provide reward when answer is erased.**
 - **No reward** when answer may affect the world.
 - Verify these!
Progress! Verification of “Counterfactual Oracle AI” down to x86 machine code

- TODO: verify down to hardware

Future possibilities of verification for safety:
- Verify other safety properties
 - E.g. existing work on verifying adversarial robustness
 - Question: can we specify the right problems?
- Long-term goal: “Safety certificates”
Debate: "Will future AGI systems be optimizing a single long-term goal?" Peter Eckersley, Anna Salamon, Rohin Shah, David Krueger (moderator)

- More specific prompt:

 “Suppose people (in this room and similar rooms) agree that building AGI systems to be optimizers is currently a bad idea, and suppose that AI comes about in the next several decades, is there still much of a chance that we end up with AGI systems which optimize for a single long-term goal?

- Debate highlights:
 - Extensive discussion of “inner optimizers”
 - Are there economic incentives to build AGIs that optimize long-term goals?
 - Respecting other agents’ autonomy: a potential alternative to optimization?