A Path to Al

Yann LeCun

Facebook AI Research & NYU

How can machines be intelligent and beneficial

The Architecture of an AI system

- Perception: estimates the state of the world
 - Vision, Speech, Audio

Agent

- Prediction, Causal Inference
- Planning, Reasoning, Working Memory
- Objective: Measures the agent's "happiness"
- Agent acts to optimize the objective
- Drives the system to do what we want
- Parts of it are hardwired and immutable
- Parts of it is trainable

Obstacles to AI How could machines acquire common sense?

- TL;DR:
 - Machines don't have common sense
 - To acquire it, they must learn how the world works by observation
 - Predictive/unsupervised learning is the missing link

Today, AI = Supervised (Deep) Learning

But Supervised Learning is Insufficient for "Real" Al

- Most of animals and humans learning is unsupervised, through interaction with the world
- We learn how the world works by observing it
 We learn many simple things: depth and 3dimensionality, gravity, object permanence,
- We build models of the world through predictive unsupervised learning
- World models give us "common sense"

"The trophy doesn't fit in the suitcase because it's too large/small"

(Winograd Schema)

"Mike picked up his bag and left the room"

We have common sense because we know how the world works

How do we get machines to learn that?

Common Sense is the ability to fill in the blanks

- Infer the state of the world from partial information
- Infer the future from the past and present
- Infer past events from the present state
- Filling in the visual field at the retinal blind spot
- Filling in occluded images
- Filling in missing segments in text, missing words in speech.
- Predicting the consequences of our actions
- Predicting the sequence of actions leading to a result

Predicting any part of the past, present or future percepts from available information.

That's what predictive unsupervised learning is

ig. 1. Human retina as seen through an opthalmoscope.

The Necessity of Unsupervised / Predictive Learning

- The number of samples required to train a large learning machine (for any task) depends on the amount of information that we ask it to predict.
 - ► The more you ask of the machine, the larger it can be.
- "The brain has about 10^14 synapses and we only live for about 10^9 seconds. So we have a lot more parameters than data. This motivates the idea that we must do a lot of unsupervised learning since the perceptual input (including proprioception) is the only place we can get 10^5 dimensions of constraint per second."
 - Geoffrey Hinton (in his 2014 AMA on Reddit)
 - (but he has been saying that since the late 1970s)

Predicting human-provided labels is not enough

Predicting a value function is not enough

Three Types of Learning

Reinforcement Learning

The machine predicts a scalar reward given once in a while

A few bits trial

Supervised Learning

- The machine predicts a category or a few numbers for each input
- ▶ 10→10,000 bits per trial
- Unsupervised Learning

The machine predicts any part of its input for any observed part.

- Predicts future frames in videos
- Millions of bits per trial
 - But these are unreliable bits!

PLANE

How Much Information does the Machine Need to Predict?

Pure Reinforcement Learning (cherry)

The machine predicts a scalar reward given once in a while.

► A few bits for some samples

Supervised Learning (icing)

The machine predicts a category or a few numbers for each input

▶ 10→10,000 bits per sample

Unsupervised/Predictive Learning (génoise)

- The machine predicts any part of its input for any observed part.
- Predicts future frames in videos
- Millions of bits per sample

Unsupervised Learning is the Dark Matter (or Dark Energy) of Al

Not a jab at RL (we do RL at FAIR)

Model-free RL worsk in games, but it doesn't really work in the real world

FAIR won the VizDoom 2016 competition. [Wu & Tian, submitted to ICLR 2017]

TorchCraft: interface between Torch and StarCraft (on github) [Usunier et al, submitted to ICLR 2017]

Sutton's Dyna Architecture: "try things in your head before acting"

Dyna: an Integrated Architecture for Learning, Planning and Reacting [Rich Sutton, ACM SIGART 1991]

The main idea of Dyna is the old, commonsense idea that planning is 'trying things in your head,' using an internal model of the world (Craik, 1943; Dennett, 1978; Sutton & Barto, 1981). This suggests the existence of a more primitive process for trying things *not* in your head, but through direct interaction with the world. *Reinforcement learning* is the name we use for this more primitive, direct kind of trying, and Dyna is the extension of reinforcement learning to include a learned world model.

REPEAT FOREVER:

- 1. Observe the world's state and reactively choose an action based on it;
- 2. Observe resultant reward and new state;
- 3. Apply reinforcement learning to this experience;
- 4. Update action model based on this experience;
- 5. Repeat K times:
 - 5.1 Choose a hypothetical world state and action;
 - 5.2 Predict resultant reward and new state using action model;
 - 5.3 Apply reinforcement learning to this hypothetical experience.

Classical model-based optimal control

- Simulate the world (the plant) with an initial control sequence
- Adjust the control sequence to optimize the objective through gradient descent
- Backprop through time was invented by control theorists in the late 1950s
- ▶ it's sometimes called the adjoint state method
- ▶ [Athans & Falb 1966, Bryson & Ho 1969]

Architecture of an Al Agent

• TL;DR:

AI Agent = perception + world model + actor + critic + objective

Al System: Learning Agent + Objective

- The agent gets percepts from the world
- The agent acts on the world
- The agents tries to minimize the longterm expected cost.
- Objective has immutable and trainable parts

Al Agent: Reasoning = Simulating

- The essence of intelligence is the ability to predict
- To plan ahead, we must simulate the world
- The action taken minimizes the predicted cost

Learning predictive models The missing link to AI

• TL;DR:

Generative Adversarial Networks are extremely promising

Learning Physics (PhysNet) [Lerer, Gross, Fergus, ICML'16]

ConvNet predicts the trajectories of falling blocks
 Uses the Unreal game engine hooked up to Torch.

But in the real world, the future is uncertain...

Naïve predictive learning

- Minimize the prediction error
- Predict the average of all plausible futures
- Blurry results

- Better predictive learning
 - Learning the loss function
 - Predict one plausible future among many
 - Sharper results

The Hard Part: Prediction Under Uncertainty

The observed future is a representative of a set of plausible futures

Adversarial Training: the key to predicting under uncertainty

- Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],
- Energy-Based GAN [Mathieu et al. 2016]

Adversarial Training: the key to predicting under uncertainty

- Generative Adversarial Networks (GAN) [Goodfellow et al. NIPS 2014],
- Energy-Based GAN [Mathieu et al. 2016]

Energy-Based GAN trained on ImageNet at 128x128 pixels

Energy-Based GAN trained on ImageNet at 256x256 pixels

Trained on dogs

[Mathieu, Couprie, LeCun arXiv:1511:05440]
 But we are far from a complete solution.

Video Prediction: predicting 5 frames

Video Prediction: predicting 5 frames

Video Prediction: predicting 50 frames

Aligning the Objective with Human Values

- Make the objective have two components
- 1. A hardwired, immutable "safeguard" objective
 - Call it the instinct
- 2. A Trainable objective that estimates the value function of its human trainers
 - It's trained through adversarial training / Inverse RL.
 - (for once, I'm agreeing with Stuart Russel)

Inverse RL through Adversarial Training

- Train the objective to emulate the (unknown) objectives of the human trainers
- Objective trains to distinguish trainer actions from agent actions
- Agent plans/trains to minimize objective

