Highlights from Asilomar workshop on Beneficial AI

Para.

Viktoriya Krakovna, FLI / DeepMind

Al safety research areas

Many challenges associated with increasing AI capabilities:

- Value learning
- Robust self-modification
- Anomaly detection
- Governance and policy
- ... and more

Good news: Awesome people working on these problems right now!

Value learning

Question: How to specify complicated human values and ethics to AI systems?

Value learning by human feedback

Stuart Russell: Teach the agent by <u>demonstrating human actions</u> (cooperative inverse reinforcement learning).

Owain Evans: Human actions are often inconsistent and suboptimal. Modify inverse reinforcement learning to <u>account for human biases</u>.

Paul Christiano: Use semi-supervised learning to <u>decrease reliance</u> <u>on human feedback</u> (scalable AI control).

Value learning by building in morality

Francesca Rossi: Specify ethical laws through constraints.

Vincent Conitzer: <u>Find patterns</u> in human ethical decisions, and build those features into AI systems.

Adrian Weller: Can we make human moral concepts more precise and consistent?

Robust self-modification

Question: How can AI systems modify themselves while retaining their safety properties?

Robust self-modification

Ramana Kumar: Implement a <u>formal verification model</u> to study the challenges of self-referential reasoning.

Bas Steunebrink: <u>Bounded recursive self-modification</u>: make small modifications and test them empirically.

Anomaly detection

Question: How can AI systems recognize when they are in an unfamiliar setting and generalize from their past experiences?

"There are known knowns; there are things we know we know. We also know there are known unknowns; that is to say we know there are some things we do not know. But there are also unknown unknowns – the ones we don't know we don't know."

Anomaly detection

Percy Liang: You can make good predictions even <u>without</u> <u>assuming</u> where your test data comes from.

Tom Dietterich: Use a <u>monitoring</u> algorithm to detect when the original algorithm is extrapolating.

Fuxin Li: <u>Never do extrapolation!</u> Test whether a data point is normal or adversarial.

Brian Ziebart: <u>Be pessimistic!</u> What is the worst case for predictive data that still matches the previous observations?

Governance and policy

Question: How can we help policymakers manage the societal impacts of AI?

Governance and policy

Heather Roff: Define the concept of <u>meaningful human control</u> of autonomous weapons at tactical, operational, and strategic levels.

Peter Asaro: <u>Who is responsible</u> for the actions of autonomous weapons? Define what we mean by autonomy, agency, and liability.

Moshe Vardi: Organize a multidisciplinary summit on job automation.

Nick Bostrom: Derive <u>policy desiderata</u> for transition to machine intelligence era: efficiency, coordination, common good

Current AI safety research teams

CFI LEVERHULME CENTRE FOR THE FUTURE OF INTELLIGENCE

Future of Humanity Institute

UC Berkeley Center for Human-Compatible AI

Independent:

FLI grantees

Industry:

Have a chat with the FLI researchers!

futureoflife.org/ai-safety-research

