Applying Formal Verification to Reflective Reasoning

R. Kumar1 B. Fallenstein2

1Data61, CSIRO and UNSW
ramana@intelligence.org

2Machine Intelligence Research Institute
benya@intelligence.org

Beneficial Artificial Intelligence, Asilomar 2017
Formal Methods and Artificial Intelligence

What are formal methods?
Formal Methods and Artificial Intelligence

What are formal methods?

- *Mathematical models* of software/hardware systems
- Machine-checked *proofs* of theorems

Formal methods for AI?

- Proofs are premature: specifications for AI still unclear
- For highly reliable systems, we would want a formal argument
- AI systems themselves might employ proofs for some tasks

There is one area where formal methods could shed light now...
Formal Methods and Artificial Intelligence

What are formal methods?

- *Mathematical models* of software/hardware systems
- Machine-checked *proofs* of theorems
- Wide field: what is proved, fidelity of model, effort required

Formal methods for AI?

- Proofs are premature: specifications for AI still unclear
- For highly reliable systems, we would want a formal argument
- AI systems themselves might employ proofs for some tasks

There is one area where formal methods could shed light now
Formal Methods and Artificial Intelligence

What are formal methods?

- *Mathematical models* of software/hardware systems
- Machine-checked *proofs* of theorems
- Wide field: what is proved, fidelity of model, effort required

Formal methods for AI?

- Proofs are premature: specifications for AI still unclear
- For highly reliable systems, we would want a formal argument
- AI systems themselves might employ proofs for some tasks

There is one area where formal methods could shed light now
Formal Methods and Artificial Intelligence

What are formal methods?

- Mathematical models of software/hardware systems
- Machine-checked proofs of theorems
- Wide field: what is proved, fidelity of model, effort required

Formal methods for AI?

- Proofs are premature: specifications for AI still unclear
Formal Methods and Artificial Intelligence

What are formal methods?

- Mathematical models of software/hardware systems
- Machine-checked proofs of theorems
- Wide field: what is proved, fidelity of model, effort required

Formal methods for AI?

- Proofs are premature: specifications for AI still unclear
- For highly reliable systems, we would want a formal argument
Formal Methods and Artificial Intelligence

What are formal methods?

- **Mathematical models** of software/hardware systems
- Machine-checked *proofs* of theorems
- Wide field: what is proved, fidelity of model, effort required

Formal methods for AI?

- Proofs are premature: *specifications* for AI still unclear
- For *highly reliable* systems, we would want a formal argument
- AI systems themselves might employ proofs for some tasks
Formal Methods and Artificial Intelligence

What are formal methods?

- *Mathematical models* of software/hardware systems
- Machine-checked *proofs* of theorems
- Wide field: what is proved, fidelity of model, effort required

Formal methods for AI?

- Proofs are premature: *specifications* for AI still unclear
- For *highly reliable* systems, we would want a formal argument
- AI systems themselves might employ proofs for some tasks

There is one area where formal methods could shed light now
Formal Methods for Reflective Reasoning

Vingeian Reflection

- AI systems may need to rely on other, more powerful agents:
 - Self-improving systems: their successors
 - Multi-agent environments: their peers
Vingeian Reflection

- AI systems may need to rely on other, *more powerful* agents:
 - Self-improving systems: their successors
 - Multi-agent environments: their peers
- Can reason only *abstractly* about a more powerful reasoner
Formal Methods for Reflective Reasoning

Vingean Reflection

- AI systems may need to rely on other, *more powerful* agents:
 - Self-improving systems: their successors
 - Multi-agent environments: their peers
- Can reason only *abstractly* about a more powerful reasoner

Formal Logic as Model of Abstract Reasoning

Gödel/Löb: "formal system that proves its own consistency must be inconsistent"
Self-improving systems must avoid this kind of problem
Formal Methods for Reflective Reasoning

Vingean Reflection

- AI systems may need to rely on other, *more powerful* agents:
 - Self-improving systems: their successors
 - Multi-agent environments: their peers
- Can reason only *abstractly* about a more powerful reasoner

Formal Logic as Model of Abstract Reasoning

- Concrete setting for study, and seems to generalise
Vingean Reflection

- AI systems may need to rely on other, *more powerful* agents:
 - Self-improving systems: their successors
 - Multi-agent environments: their peers
- Can reason only *abstractly* about a more powerful reasoner

Formal Logic as Model of Abstract Reasoning

- Concrete setting for study, and seems to generalise
- Gödel/Löb: “formal system that proves its own consistency must be inconsistent”
Formal Methods for Reflective Reasoning

Vingean Reflection

- AI systems may need to rely on other, more powerful agents:
 - Self-improving systems: their successors
 - Multi-agent environments: their peers
- Can reason only abstractly about a more powerful reasoner

Formal Logic as Model of Abstract Reasoning

- Concrete setting for study, and seems to generalise
- Gödel/Löb: “formal system that proves its own consistency must be inconsistent”
- Self-improving systems must avoid this kind of problem
Our FLI Grant Aims

Based on pen-and-paper work on reflective reasoning principles
Our FLI Grant Aims

Based on pen-and-paper work on reflective reasoning principles

Proposed Project

Implement a model of a reflective reasoning principle, to see:
 ▶ whether all the *details* work out, and
 ▶ how *hard* it is to do so.
Our FLI Grant Aims

Based on pen-and-paper work on reflective reasoning principles

Proposed Project
Implement a model of a reflective reasoning principle, to see:
- whether all the *details* work out, and
- how *hard* it is to do so.

Eventual Project
Assess how far theorem proving technology is from implementing reflective reasoning, and push it along.
Overview

- Reflective Reasoning: The Problem and Partial Solutions
- Our Progress on the Implementation
- Examples of Difficulties
- Outlook for the Future
Reflective Reasoning Example Setup

Botworld: Environment for Studying Naturalistic Agents
Reflective Reasoning Example Setup

Botworld: Environment for Studying Naturalistic Agents

- Cellular automaton with *embedded* robots
- Robots can construct/inspect/destroy/program other robots
Reflective Reasoning Example Setup

Botworld: Environment for Studying Naturalistic Agents

- Cellular automaton with *embedded* robots
- Robots can construct/inspect/destroy/program other robots
- Task: Construct a Botworld agent that can self-modify into a *provably safe* agent of the same overall architecture
 - “safe” could mean, e.g., ensure some robot is not destroyed, and can ratchet up a minimum utility requirement
Reflective Reasoning Example Setup

Botworld: Environment for Studying Naturalistic Agents

- Cellular automaton with *embedded* robots
- Robots can construct/inspect/destroy/program other robots
- Task: Construct a Botworld agent that can self-modify into a *provably safe* agent of the same overall architecture
 - “safe” could mean, e.g., ensure some robot is not destroyed, and can ratchet up a minimum utility requirement

Suggester-Verifier Architecture

Agent with two sub-programs:
Reflective Reasoning Example Setup

Botworld: Environment for Studying Naturalistic Agents

- Cellular automaton with *embedded* robots
- Robots can construct/inspect/destroy/program other robots
- Task: Construct a Botworld agent that can self-modify into a *provably safe* agent of the same overall architecture
 - “safe” could mean, e.g., ensure some robot is not destroyed, and can ratchet up a minimum utility requirement

Suggester-Verifier Architecture

Agent with two sub-programs:
- Suggester: Sophisticated, untrusted code to compute agent’s command plus a *proof* that it is no worse than a default
Reflective Reasoning Example Setup

Botworld: Environment for Studying Naturalistic Agents

- Cellular automaton with *embedded* robots
- Robots can construct/inspect/destroy/program other robots
- Task: Construct a Botworld agent that can self-modify into a *provably safe* agent of the same overall architecture
 - “safe” could mean, e.g., ensure some robot is not destroyed, and can ratchet up a minimum utility requirement

Suggester-Verifier Architecture

Agent with two sub-programs:

- Suggester: Sophisticated, untrusted code to compute agent’s command plus a *proof* that it is no worse than a default
- Verifier: Simple, trustworthy code to *check* the suggester’s proof, and output the suggested command or default
Problem and Approach

Argument for Safety of Successor

- To create a successor, must prove that its actions will be safe
- If successor follows s-v architecture, it will only take actions it has proven to be safe
- However, to conclude that an action is actually safe from a proof is problematic: This principle, $T \vdash \Box_T \neg \varphi \iff \varphi$, violates Gödel/Löb
Argument for Safety of Successor

- To create a successor, must prove that its actions will be safe
- If successor follows s-v architecture, it will only take actions it has proven to be safe
- However, to conclude that an action is actually safe from a proof is problematic: This principle, $T \vdash □_T \neg \phi \implies \phi$, violates Gödel/Löb

Partial Solutions

- Descending Trust: $T_{100} \vdash □_{T_{99}} \neg \phi \implies \phi$, $T_{99} \vdash □_{T_{98}} \neg \phi \implies \phi$, ...
Problem and Approach

Argument for Safety of Successor

▶ To create a successor, must prove that its actions will be safe
▶ If successor follows s-v architecture, it will only take actions it has proven to be safe
▶ However, to conclude that an action is actually safe from a proof is problematic: This principle, $T \vdash \square_T \neg \varphi \Rightarrow \varphi$, violates Gödel/Löb

Partial Solutions

▶ Descending Trust: $T_{100} \vdash \square_{T_{99}} \neg \varphi \Rightarrow \varphi$, $T_{99} \vdash \square_{T_{98}} \neg \varphi \Rightarrow \varphi$, …
▶ Model Polymorphism: $T_{\kappa+1} \vdash \forall n. \square_{T_{\kappa}} \neg \varphi(n) \Rightarrow \varphi(n)$
Progress

Prerequisite Technology

- Programming Language (CakeML), formal specification, verified implementation
- Proof-producing translation from logic to CakeML
- Self-Verifying Theorem Prover (Candle) (work-in-progress)
- Proof-producing translation from (meta) logic to Candle

Specific to this Implementation

- Model-Polymorphism Library (work in progress)
- Botworld Formalisation
- Suggester-Verifier Design
- Partial Proof of Suggester-Verifier Correctness
Results

- Code on GitHub (machine-intelligence/Botworld.HOL)
- Upcoming presentation at AITP’17
- Draft report online
Difficulties 1

Reflective Programming

- suggester-verifier(sug,obs,def):
 1. run sug(obs,def), obtain (com,prf)
 2. if verify(obs,def,com,prf) then com
 3. else def

- Currently, step 1 is by splicing the suggester program into the suggester-verifier program
Difficulties 1

Reflective Programming

- suggester-verifier(sug,obs,def):
 1. run sug(obs,def), obtain (com,prf)
 2. if verify(obs,def,com,prf) then com
 3. else def

- Currently, step 1 is by splicing the suggester program into the suggester-verifier program
- Alternative: call an eval primitive
- Formal semantics, and verified implementation, for dynamic evaluation is ongoing research
Difficulties 2

Scaling Reflection Up

- Suggester’s proof must include many definitions:
 - An internal copy of Botworld
 - Utility function on Botworld games
 - Machinery for model polymorphism
Difficulties 2

Scaling Reflection Up

- Suggester’s proof must include many definitions:
 - An internal copy of Botworld
 - Utility function on Botworld games
 - Machinery for model polymorphism
- Reflection library (ITP’15): superlinear time in no. definitions
Difficulties 2

Scaling Reflection Up

- Suggester’s proof must include many definitions:
 - An internal copy of Botworld
 - Utility function on Botworld games
 - Machinery for model polymorphism
- Reflection library (ITP’15): superlinear time in no. definitions
- All made in internal copy of logic used by Candle
Difficulties 2

Scaling Reflection Up

- Suggester’s proof must include many definitions:
 - An internal copy of Botworld
 - Utility function on Botworld games
 - Machinery for model polymorphism
- Reflection library (ITP’15): superlinear time in no. definitions
- All made in internal copy of logic used by Candle

Partial Progress

- Alternative reflection library which axiomatises as many definitions as possible
Difficulties 2

Scaling Reflection Up

- Suggester’s proof must include many definitions:
 - An internal copy of Botworld
 - Utility function on Botworld games
 - Machinery for model polymorphism
- Reflection library (ITP’15): superlinear time in no. definitions
- All made in internal copy of logic used by Candle

Partial Progress

- Alternative reflection library which axiomatises as many definitions as possible
- Automated machinery for quoting to bridge the various levels
Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- I would estimate 4 person-years.
Outlook

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- I would estimate 4 person-years. (building on > 25 in prereqs)
Outlook

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- I would estimate 4 person-years. (building on > 25 in prereqs)
- Improvements on model polymorphism would be nice!
Outlook

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- I would estimate 4 person-years. (building on > 25 in prereqs)
- Improvements on model polymorphism would be nice!

Formal Methods for AI

- Specifications Needed!
Outlook

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- I would estimate 4 person-years. (building on > 25 in prereqs)
- Improvements on model polymorphism would be nice!

Formal Methods for AI

- Specifications Needed!
- Novel Architectures for AI Systems, e.g., improve on Suggester-Verifier to support logical induction and non-proof-based reasoning
Outlook

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- I would estimate 4 person-years. (building on > 25 in prereqs)
- Improvements on model polymorphism would be nice!

Formal Methods for AI

- Specifications Needed!
- Novel Architectures for AI Systems, e.g., improve on Suggester-Verifier to support logical induction and non-proof-based reasoning
- Reducing Problems to Functional Correctness (analogy: security of seL4 via architectural argument, becomes amenable to verification)