Human Preferences and Human Control for Reinforcement Learners

Owain Evans
University of Oxford
FHI
Collaborators

Noah Goodman (Stanford, Uber AI)

Andreas Stuhlmueller (Stanford, ought.com)

John Salvatier (Oxford, AI Impacts)
Collaborators

David Abel (Brown)

David Krueger (MILA Montreal)

Jan Leike (DeepMind, Oxford)
Overview

GOAL: agents that (a) learn policies aligned with human preferences (b) via safe learning/exploration ("Safe RL").
Overview

GOAL: agents that (a) learn policies aligned with human preferences (b) via safe learning/exploration (“Safe RL”).

Ways to specify optimal policy for RL agent:

2. Learn rewards or policy from demonstration (IRL or imitation learning)

3. Human provides rewards online (TAMER, Active Reward Learning).
Overview

GOAL: agents that (a) learn policies aligned with human preferences (b) via safe learning/exploration (“Safe RL”).

Ways to specify optimal policy for RL agent:

2. Learn rewards or policy from demonstration (IRL or imitation learning)

3. Human provides rewards online (TAMER, Active Reward Learning).
IRL with Bounded, Biased Agents

IRL assumes human demonstrator is optimal up to random noise (softmax/Boltzmann)

Humans deviate **systematically** from optimal:

- Biases: hyperbolic discounting, prospect theory.
- Cognitive bounds: forgetting, myopic (limited depth) planning.
IRL with Bounded, Biased Agents

IRL assumes human demonstrator is optimal up to random noise (softmax/Boltzmann)

Humans deviate systematically from optimal

e.g. Person smokes every week but wishes to quit.
There are decision problems s.t.

- IRL on biased agents can lead to arbitrarily mistaken inferences ….

- … but true preferences can be recovered (by modifying IRL)

- Problems are simple, uncontrived: Procrastination, Temptation, Bandits (explore/exploit).
and, after you have done the work, you receive optimal agent (without softmax noise) never procrastinates. It either does the work without unneccessary that is worse than staying at "do nothing" the entire time. We call this Suppose the agent moves to "promise" but never moves to "help friend". This results in an out-utility. We set a low prior on the agent samples an "optimal" model (which solves the MDP exactly) with a Monte Carlo model ("MC") where but there is a tiny cost of There are two decisions to make. First, you decide whether to promise your friend that you will offer to "promise", but once actually at "promise", it delays the work indefinitely. Discounting (a) Discounting

● ● ● ● ● Potentially discounting

Optimal agent

Inferred utility of restaurant A

Inferred utility of restaurant B

Trials where agent chooses A

Trials where agent chooses B

\[
\var agent = function(state, delay, timeLeft){
 return Marginal(function(){
 var action = uniformDraw(actions)
 var eu = expUtility(state, action, delay, timeLeft)
 factor(alpha, eu)
 return action
 })
}
\]

\[
\var expUtility = function(state, action, delay, timeLeft){
 var u = discountedUtility(state, action, delay, K)
 if (timeLeft == 1)
 return u
} else {
 return u + expectation(INFER_EU(function(){
 var nextState = transition(state, action)
 var nextAction = sample(agent(nextState, delay+1, timeLeft-1)
 return expUtility(nextState, nextAction, delay+1, timeLeft-1)
 }))
}
\]
Overview

GOAL: agents that (a) learn policies aligned with human preferences (b) via safe learning/exploration ("Safe RL").

Ways to specify optimal policy for RL agent:

2. Learn rewards or policy from demonstration (IRL or imitation learning)

3. Human provides rewards online (TAMER, Active Reward Learning).
Active Reinforcement Learning

- Human provides rewards **online**
- **Label** the state-actions that actually occur
- Problem: how to reduce burden on human?
- *Active Reinforcement Learning*: agent selects which state-actions are labeled by human.
Active Reinforcement Learning

- Agent chooses whether to observe reward R_t on time-step t
- Observing R_t has cost c
- Goal: maximize $\sum_t R_t - c q_t$, $q_t = \begin{cases} 1 & \text{if } R_t \text{is observed} \\ 0 & \text{else} \end{cases}$
Overview

GOAL: agents that (a) learn policies aligned with human preferences (b) via safe learning/exploration ("Safe RL").

Ways to specify optimal policy for RL agent:

2. Learn rewards or policy from demonstration (IRL or imitation learning)

3. Human provides rewards online (TAMER, Active Reward Learning).
Human-in-the-loop RL

Environment M

Protocol Program P

Agent L

Human H
Human teaching for any RL agent

Environment M

Protocol Program P

Agent L

Human H

action pruning

agent in simulation

feature design, preprocessing

reward shaping

s, r

a
Prevent Catastrophes with Interactive RL

Catastrophic action: action that RL agent should essentially never take, i.e. \(P(\text{action}) < \epsilon \)

Examples:

- breaking laws / moral rules
- physically harm humans
- manipulate or psychologically harm humans
Prevent Catastrophes with Interactive RL

Catastrophic action: action that RL agent should never take, i.e. \(P(\text{action}) < \epsilon \)

Examples:

- breaking laws / moral rules
- physically harm humans
- manipulate or psychologically harm humans
Prevent Catastrophes with human in loop

Related work: Safe RL and avoiding SREs (Moldovan and Abeel, Frank et al., Paul et. al, Lipton et al.)

Challenge:

- Simulation often inadequate (esp. for extreme events)
- RL agents learn by **trial** and **error** (don’t know R and T in advance)

Solution: human blocks catastrophes **before** they happen
Prevent Catastrophes with human in loop

1. Human blocks agent trying bad action, gives big negative reward.

2. Classifier learns to recognize bad actions.

3. Classifier takes over human role.

4. (Human interactively defines a new MDP).

Problems: efficiency, robust generalization.
Human Preferences and Human Control for Reinforcement Learners

Owain Evans
University of Oxford
FHI

GOAL: agents that (a) learn policies aligned with human preferences (b) via safe learning/exploration (“Safe RL”).

Ways to specify optimal policy for RL agent:

2. Learn rewards or policy from demonstration (IRL or imitation learning)

3. Human provides rewards online (TAMER, Active Reward Learning).

THANKS!