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IRL with Bounded, Biased Agents

IRL assumes human demonstrator is optimal up to 

random noise (softmax/Boltzmann) 

Humans deviate systematically from optimal: 

• Biases: hyperbolic discounting, prospect theory.  

• Cognitive bounds: forgetting, myopic (limited depth) 

planning.
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IRL assumes human demonstrator is optimal up to 

random noise (softmax/Boltzmann) 

Humans deviate systematically from optimal 

e.g. Person smokes every week but wishes to quit.



IRL with Bounded, Biased Agents

There are decision problems s.t.   

• IRL on biased agents can lead to arbitrarily mistaken 
inferences ….  

• … but true preferences can be recovered (by modifying 
IRL)  

• Problems are simple, uncontrived: Procrastination, 
Temptation, Bandits (explore/exploit).  



IRL with Bounded, Biased Agents

More info: 
“Learning the Preferences of Ignorant, Inconsistent Agents” AAAI 2016. 

“Learning the Preferences of Bounded Agents” NIPS workshop 2015. 

http://www.agentmodels.org 
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Optimal agent

Potentially bounded VOI

Bounded VOI

var agent = function(state, delay, timeLeft){

return Marginal(function(){

var action = uniformDraw(actions)

var eu = expUtility(state, action, delay, timeLeft)

factor(alpha * eu)

return action

})

}

var expUtility = function(state, action, delay, timeLeft){

var u = discountedUtility(state, action, delay, K)

if (timeLeft == 1){

return u

} else {

return u + expectation(INFER_EU(function(){

var nextState = transition(state, action)

var nextAction = sample(agent(nextState, delay+1, timeLeft-1))

return expUtility(nextState, nextAction, delay+1, timeLeft-1)

}))

}

}
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Active Reinforcement Learning

Human provides rewards online

Label the state-actions that actually occur 

Problem: how to reduce burden on human? 

Active Reinforcement Learning: agent selects which 

state-actions are labeled by human. 
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Human teaching for any RL agent
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processing
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Prevent Catastrophes with Interactive RL

Catastrophic action: action that RL agent should 

essentially never take, i.e. P(action) < 𝜖  

Examples: 

breaking laws / moral rules 

physically harm humans 

manipulate or psychologically harm humans
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Prevent Catastrophes with human in loop

Related work: Safe RL and avoiding SREs (Moldovan and Abeel, Frank et al., 

Paul et. al, Lipton et al.) 

Challenge:  

Simulation often inadequate (esp. for extreme events) 

RL agents learn by trial and error (don’t know R and T in 

advance) 

Solution: human blocks catastrophes before they happen
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1. Human blocks agent trying bad action, 

gives big negative reward. 

2. Classifier learns to recognize bad actions 

3. Classifier takes over human role.  

4. (Human interactively defines a new MDP).  

 

Problems: efficiency, robust generalization. 

Prevent Catastrophes with human in loop
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Ways to specify optimal policy for RL agent:  

1. Hand-code reward function before learning. 
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THANKS!


