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|IRL with Bounded, Biased Agents

IRL assumes human demonstrator is optimal up to
random noise (softmax/Boltzmann)

Humans deviate systematically from optimal:
e Biases: hyperbolic discounting, prospect theory.

e Cognitive bounds: forgetting, myopic (limited depth)
planning.



IRL with Bounded, Biased Agents

IRL assumes human demonstrator is optimal up to
random noise (softmax/Boltzmann)

Humans deviate systematically from optimal

e.g. Person smokes every week but wishes to quit.




|IRL with Bounded, Biased Agents

There are decision problems s.t.

* |[RL on biased agents can lead to arbitrarily mistaken
inferences ....

e ... but true preferences can be recovered (by modifying
IRL)

 Problems are simple, uncontrived: Procrastination,
Temptation, Bandits (explore/exploit).
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|IRL with Bounded, Biased Agents

More info:

‘Learning the Preferences of Ignorant, Inconsistent Agents™ AAAI 2016.
“Learning the Preferences of Bounded Agents” NIPS workshop 2015.

http://www.agentmodels.org
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Trials where agent chooses A Trials where agent chooses A

var agent = function(state, delay, timeleft) {

return Marginal (function () {
var action = uniformDraw (actions)
var eu = expUtility(state, action, delay, timeleft)
factor (alpha x eu)
return action

)

var expUtility = function(state, action, delay, timeleft) {

var u = discountedUtility (state, action, delay, K)
if (timeLeft == 1) {
return u
} else {
return u + expectation (INFER_EU (function () {
var nextState = transition(state, action)
var nextAction = sample (agent (nextState, delay+l, timelLeft-

return expUtility (nextState, nextAction, delay+l, timeleft-
1))
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Active Reinforcement Learning

Human provides rewards online
Label the state-actions that actually occur
Problem: how to reduce burden on human®

Active Reinforcement Learning: agent selects which

state-actions are labeled by human.
Environment



Active Reinforcement Learning
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* Agent chooses whether to observe reward [; on time-step ¢

e Observing [?; has cost c

1 1f Ras observed

* Goal: maximize ) , Rt —cq, q =
0 else
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Human-in-the-loop RL

Protocol Program P




Human teaching for any RL agent
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Prevent Catastrophes with Interactive RL

. action that RL agent should
essentially never take, i.e. P(action) < €

Examples:
breaking laws / moral rules
physically harm humans

manipulate or psychologically harm humans
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Prevent Catastrophes with human in loop

Related work: Safe RL and avoiding SREs (Moldovan and Abeel, Frank et al.,
Paul et. al, Lipton et al.)
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1 Challenge: :
: ‘
-~ Simulation often inadequate (esp. for extreme events)
! - RL agents learn by trial and error (don'tknow Rand Tin |
. advance) ]
- . Solution: human blocks catastrophes before they happen '?f
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Prevent Catastrophes with human in loop

1. Human blocks agent trying bad action,

gives big negative reward.

2. Classifier learns to recognize bad actions

3. Classifier takes over human role. 0
4
4. (Human interactively defines a new MDP). l
3 Pels
2
Problems: efticiency, robust generalization. 1 G




Human Preferences and Human Control for
Reinforcement Learners

GOAL: agents that (a) learn policies aligned with human preferences (b) via safe learning/
exploration (“Safe RL”).

Ways to specity optimal policy for RL agent:

2. Learn rewards or policy from demonstration (IRL or imitation learning)

3.  Human provides rewards online (TAMER, Active Reward Learning).

THANKS!



