Learning how to Learn Learning Algorithms: Recursive Self-Improvement

Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

NNAISENSE
Jürgen Schmidhuber
You_again Shmidhoobuh
“True” Learning to Learn (L2L) is not just transfer learning! Even a simple feedforward NN can transfer-learn to learn new images faster through pre-training on other image sets.

True L2L is not just about learning to adjust a few hyper-parameters such as mutation rates in evolution strategies (e.g., Rechenberg & Schwefel, 1960s).
Radical L2L is about encoding the initial learning algorithm in a universal language (e.g., on an RNN), with primitives that allow to modify the code itself in arbitrary computable fashion.

Then surround this self-referential, self-modifying code by a recursive framework that ensures that only “useful” self-modifications are executed or survive (RSI).
J. Good (1965): informal remarks on an intelligence explosion through recursive self-improvement (RSI) for super-intelligences

My concrete algorithms for RSI: 1987, 93, 94, 2003

http://people.idsia.ch/~juergen/metalearner.html

R-learn & improve learning algorithm itself, and also the meta-learning algorithm, etc…

http://people.idsia.ch/~juergen/diploma.html
With Hochreiter (1997), Gers (2000), Graves, Fernandez, Gomez, Bayer...

1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, Apple, all use LSTM now

http://www.idsia.ch/~juergen/rnn.html
1993: More elegant Hebb-inspired addressing to go from \((\#\text{hidden})\) to \((\#\text{hidden})^2\) temporal variables: gradient-based RNN learns to control internal end-to-end differentiable spotlights of attention for fast differentiable memory rewrites – again fast weights

Schmidhuber, ICANN 1993: Reducing the ratio between learning complexity and number of time-varying variables in fully recurrent nets.

Similar to NIPS 2016 paper by Ba, Hinton, Mnih, Leibo, Ionesco
2005: Reinforcement-Learning or Evolving RNNs with Fast Weights

Robot learns to balance 1 or 2 poles through 3D joint

Gomez & Schmidhuber: Co-evolving recurrent neurons learn deep memory POMDPs.
GECCO 2005

http://www.idsia.ch/~juergen/evolution.html
1993: Gradient-based meta-RNNs that can learn to run their own weight change algorithm: J. Schmidhuber. A self-referential weight matrix. ICANN 1993

This was before LSTM. In 2001, however, Sepp Hochreiter taught a meta-LSTM to learn a learning algorithm for quadratic functions that was faster than backprop
Success-story algorithm (SSA) for self-modifying code (since 1994)

R(t): Reward until time t. Stack of past check points \(v_1v_2v_3\ldots\) with self-mods in between. SSA undoes selfmods after \(v_i\) that are not followed by long-term reward acceleration up until t (now):

\[
R(t)/t < \frac{[R(t)-R(v_1)]}{(t-v_1)} < \frac{[R(t)-R(v_2)]}{(t-v_2)} < \ldots
\]
<table>
<thead>
<tr>
<th>Addresses</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = ADD(a1, a2, a3)</td>
<td>0.001 0.0014 0.9 0.24 0.001 0.0014 0.9 0.9</td>
</tr>
<tr>
<td>1 = MUL(a1, a2, a3)</td>
<td>0.001 0.0014 0.04 0.01 0.001 0.0014 0.04 0.04</td>
</tr>
<tr>
<td>2 = SUB(a1, a2, a3)</td>
<td>0.99 0.0014 0.01 0.01 0.99 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>3 = JMLEQ(a1, a2, a3)</td>
<td>0.001 0.99 0.01 0.01 0.001 0.99 0.01 0.01</td>
</tr>
<tr>
<td>4 = MOVEAGENT(a1, a2)</td>
<td>0.001 0.0014 0.01 0.7 0.001 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>5 = InvokeSSA()</td>
<td>0.004 0.0014 0.01 0.01 0.004 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>6 = INCPROB(a1, a2)</td>
<td>0.001 0.0014 0.01 0.01 0.001 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>7 = DECPROB(a1, a2)</td>
<td>0.001 0.0014 0.01 0.01 0.001 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>Addresses</td>
<td>Contents</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>0 = ADD(a1, a2, a3)</td>
<td>5321 -44 810 -2 -3322 5 7 3 0 -189 2 237 6</td>
</tr>
<tr>
<td>1 = MUL(a1, a2, a3)</td>
<td>0.001 0.0014 0.9 0.24 0.001 0.0014 0.9 0.9</td>
</tr>
<tr>
<td>2 = SUB(a1, a2, a3)</td>
<td>0.001 0.0014 0.04 0.01 0.001 0.0014 0.04 0.04</td>
</tr>
<tr>
<td>3 = JMLEQ(a1, a2, a3)</td>
<td>0.99 0.0014 0.01 0.01 0.99 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>4 = MOVEAGENT(a1, a2)</td>
<td>0.001 0.0014 0.01 0.7 0.001 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>5 = InvokeSSA()</td>
<td>0.004 0.0014 0.01 0.004 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>6 = INCPOB(a1, a2)</td>
<td>0.001 0.0014 0.01 0.01 0.001 0.0014 0.01 0.01</td>
</tr>
<tr>
<td>7 = DECPROB(a1, a2)</td>
<td>0.001 0.0014 0.01 0.01 0.001 0.0014 0.01 0.01</td>
</tr>
</tbody>
</table>

INTERNAL STATE

INSTRUCTION POINTER

PERCEPTIONS

EXTERNAL ENVIRONMENT

SELF-MODIFICATION

VARIABLE PROBABILITY DISTRIBUTIONS
1997: Lifelong meta-learning with self-modifying policies and success-story algorithm: 2 agents, 2 doors, 2 keys. 1st southeast wins 5, the other 3. Through recursive self-modifications only: from 300,000 steps per trial down to 5,000.
Kurt Gödel, father of theoretical computer science, exhibited the limits of math and computation (1931) by creating a formula that speaks about itself, claiming to be unprovable by a computational theorem prover: either formula is true but unprovable, or math is flawed in an algorithmic sense.

Universal problem solver Gödel machine uses self reference trick in a new way.
Gödel Machine (2003): agent-controlling program that speaks about itself, ready to rewrite itself in arbitrary fashion once it has found a proof that the rewrite is useful, given a user-defined utility function. Theoretically optimal self-improver!
Initialize Gödel Machine by Marcus Hutter’s asymptotically fastest method for all well-defined problems.

Given \(f: X \rightarrow Y \) and \(x \in X \), search proofs to find program \(q \) that provably computes \(f(z) \) for all \(z \in X \) within time bound \(t_q(z) \); spend most time on \(f(x) \)-computing \(q \) with best current bound

\[n^3 + 10^{1000} = n^3 + O(1) \]

As fast as fastest \(f \)-computer, save for factor \(1 + \varepsilon \) and \(f \)-specific const. independent of \(x \)!

IDSIA 2002 on my SNF grant

n^3+10^{1000}=n^3+O(1)
PowerPlay not only solves but also continually invents problems at the borderline between what's known and unknown - training an increasingly general problem solver by continually searching for the simplest still unsolvable problem.
now talking to investors

neural networks-based
artificial intelligence

THE DAWN OF AI
Reinforcement learning to park
Cooperation NNAISENSE - AUDI
Learning how to Learn Learning Algorithms: Extra Slides

Jürgen Schmidhuber
The Swiss AI Lab IDSIA
Univ. Lugano & SUPSI
http://www.idsia.ch/~juergen

NNAISENSE

Time-optimal incremental search and algorithmic transfer learning in program space

Branches of search tree are program prefixes

Node-oriented backtracking restores partially solved task sets & modified memory components on error or when $\sum t > PT$
61 primitive instructions operating on stack-like and other internal data structures. For example:

push1(), not(x), inc(x), add(x,y), div(x,y), or(x,y), exch_stack(m,n), push_prog(n), movstring(a,b,n), delete(a,n), find(x), define function(m,n), callfun(fn), jumpif(val,address), quote(), unquote(), boost_probability(n,val)

Programs are integer sequences; data and code look the same; makes functional programming easy
Towers of Hanoi: incremental solutions

- +1ms, n=1: \((\text{movdisk})\)
- 1 day, n=1,2: \((c4\ c3\ \text{cpn}\ c4\ \text{by2}\ c3\ \text{by2}\ \text{exec})\)
- 3 days, n=1,2,3: \((c3\ \text{dec}\ \text{boostq}\ \text{defnp}\ c4\ \text{calltp}\ c3\ \text{c5}\ \text{calltp}\ \text{endnp})\)
- 4 days: n=4, n=5, ..., n=30: \text{by same double-recursive program}
- Profits from 30 earlier context-free language tasks \((1^n2^n): \text{transfer learning}\)
- 93,994,568,009 prefixes tested
- 345,450,362,522 instructions
- 678,634,413,962 time steps
- longest single run: \textbf{33 billion} steps (5% of total time)! Much deeper than recent memory-based “deep learners” ...
- top stack size for restoring storage: < 20,000
What the found *Towers of Hanoi* solver does:

- \((c3\ dec\ boostq\ defnp\ c4\ calltp\ c3\ c5\ calltp\ endnp)\)
- Prefix increases \(P\) of double-recursive procedure:
 Hanoi(Source,Aux,Dest,n): IF \(n=0\) exit; ELSE BEGIN
 Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest;
 Hanoi(Aux,Source,Dest,n-1); END
- Prefix boosts instructions of previously frozen program, which happens to be a previously learned solver of a context-free language \(1^n2^n\). This rewrites search procedure itself: Benefits of metalearning!
- Prefix probability 0.003; suffix probability \(3 \times 10^{-8}\); total probability \(9 \times 10^{-11}\)
- Suffix probability without prefix execution: \(4 \times 10^{-14}\)
- That is, Hanoi does profit from \(1^n2^n\) experience and incremental learning (OOPS excels at algorithmic transfer learning): speedup factor 1000
On Learning to Think: Algorithmic Information Theory for Novel Combinations of Reinforcement Learning RNN-based Controllers (RNNAIs) and Recurrent Neural World Models

http://arxiv.org/abs/1511.09249