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Fooling a deep network(szegedy et al. 2013)

* Optimizing a delta from the image to maximize a class prediction fJc (x)
max-+A/ flc (I+A7)—A||A/)| T2

Shark (93.89% confidence)
Giant Panda (99.32% confidence)
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(Szegedy et al. 2013, Goodfellow et al. 2014, Nguyen et al. 2015)



Generalization of fooling

* Adversarial examples are not random
* They generalize across networks!
e Use one algorithm to generate perturbations and test on others (Luoet

al. 2016)
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Closer Examination of Perturbations

* Two networks used in analysis:
* AlexNet (2012 state-of-the-art, 16% error on ImageNet challenge)
* VGG Network (2014-2015 state-of-the-art, 7% error on ImageNet challenge)
* First part on VGG, second part on both
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Generate Insights: Explore at the End

No convolution anymore
Close to final output

Use PCA (NN = linear + transformation)
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Corruption Traces before the Fully-
Connected Layer

* Do a PCA on layer-14 features (after the last convolutional layer)
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Fundamental Aspect of ML

* Machine learning works only on the test data if it's sampled from the
same distribution with training data

* No good result expected on adversarial images Extrapolation
since never trained on it Area
* Solution?
* Enlarge training set (add adversarial examples)
(Goodfellow et al. 2014) Inter-
* Led to many GAN-type approaches polation

* Or just detect the boundary of training
distribution and refuse to work outside

Training examples



A conservative approach

* Never do extrapolation!

* Instead, identify intruder attempts for doing so

* Has been studied in machine learning, e.g. self-aware learning (Li et al. 2008)

* Instead of “adding adversarial examples back to training”

 Which never ends!
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Extremal Value

Back to Difference between Normal and

Adversarial Examples
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Eigenvector Number vs. Extremal Value
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How to observe distributional statistics
from a single image?

* An image is a distribution of pixels

* Each convolutional layer output is a distribution of pixels
* K-dimensional distribution on k filter outputs

* Try not to use features to train directly (overfitting!)

 Instead, collect statistics:
e Mean absolute value of normalized PCA coefficients

* Minimal and maximal values
e 25-th, 50-th and 75-th percentiles



Visualization: 2 types of adversarials

LBFGS-Adversarials (Nguyen et al. 2015)

Giant Panda

Shark

EA-Adversarials (Nguyen et al.
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Mean Value of PCA Projected Value
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Visualization:

PCA Projected Value Conparison on AlexNet Layer 1
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Single-Layer Results

* Single-layer results are OK, not fantastic
* Imaginable with oversimplified features
* EA-Adversarials much easier to detect

Table 1. Classification Result with AlexNet for Normal vs. Table 2. Classification Result with VGG-16 for Normal vs.

LBFGS-adversarials [LBEGS-Adersarials
Network Layer 2nd 3rd 4th
Network Layer 2nd 3rd 4th Accuracy 721+0.7 84.1+0.7 80.3+0.6
Accuracy [ 575+£0.7  67.3£0.7 709+ 0.6 | [Nerwork Layer sh e o
Network Layer Sth 6th Accuracy | 81.4+£0.9 743+06 73.9+06
Accuracy 749+09 7895+£0.6 Network Layer 3th Oth 10th
Accuracy 74.2+07 T71.2+£0.7 743+£0.8

Table 3. Classification Result for Normal vs. EA-Adversarials
Layer 2nd 3rd 4th

Accuracy | 93.45£0.69 98.3+£0.73 97.9£0.57




Classifier Cascade

* Proposed by Viola-Jones in 2001 for face detection
* |dea: discard large amount of examples that are simple to classify
 Leave those hard to classify to the next (more expensive) stage
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Classifier Cascade

* 1 classifier for each convolutional layer

* Classify on layer 1:
* Normal: do not continue
* Unsure: go to layer 2
e Classify on layer 2...
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Result

LBFGS Adversarials EA-Adversarials
AlexNet: 83.3% Accuracy VGG: 90.7% Accuracy AlexNet: 97.3% Accuracy
90.7% AUC 93.5% AUC 98.2% AUC

ROC of Cascade Method

Performance Comparison ROC of Cascade Method
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Figure 7. (a) Comparison Between OpenMax detection Methods and Cascade Classifier: The blue curve represents the performace of
OpenMax Method, and green curve represents the perfornace for Cascade Classifier.(b) Overall ROC Performance Curve of Cascade
Classifier Trained on VGG-16 Network. (¢) Overall ROC of data generated from EA-adversarials dataset on AlexNet.



Conclusion

» A different approach geared toward Al safety
* Conservative
* Avoids extrapolation

* Try to perform “distribution tests” to test whether an example comes from
input distribution

* Classifier cascades on convolutional filter statistics work well

* Future work:
* Generative Adversarial Network (GAN) -type approach to detect intrusion



Image Recovery for LBFGS-adversarials

* Insight: LBFGS adversarials attacks the extremal value of gradient
output

* This is very specific to manipulating pixels to lower the magnitude of
certain outputs

* One can counter even with simple average filtering

Approach Top-5 Accuracy
(Recovered Images)
Original Image (Non-corrupted) 86.5%
3 x 3 Average Filter 73.0%
5 x b Average Filter 68.0%
Foveation (Object Crop MP) [16] 82.6%




Another side of the story

Noise std = 16 Noise std = 32
bell pepper (946), score 0.848 bell pepper (946), score 0.841 bell pepper (946), score 0.531

Noise std = 40 Noise std = 48
bell pepper (946), score 0.294 cucumber, cuke (944), score 0.175

e |t's also not that hard
to contaminate CNN!




