Joint work with Xin Li

Characterizing adversarial examples in deep
networks with convolutional filter statistics

Fuxin Li

Oregon State
UNIVERSITY
Oregon State University

School of EECS

web.engr.oregonstate.edu/~lif

Fooling a deep network(szegedy et al. 2013)

* Optimizing a delta from the image to maximize a class prediction fJc (x)
max-+A/ flc (I+A7)—A||A/)| T2

Shark (93.89% confidence)
Giant Panda (99.32% confidence)

+0.03

+0.03

(Szegedy et al. 2013, Goodfellow et al. 2014, Nguyen et al. 2015)

Generalization of fooling

* Adversarial examples are not random
* They generalize across networks!
e Use one algorithm to generate perturbations and test on others (Luoet

al. 2016)
VGG

>0.8 OB
Perturbations Random §

generated —— AlexNet = 0.6

: 0.4
from: —— GoogLeNet 202*
o V.
——
VGG % 20 40 60 80 100

L1 norm (per pixel)

Closer Examination of Perturbations

* Two networks used in analysis:
* AlexNet (2012 state-of-the-art, 16% error on ImageNet challenge)
* VGG Network (2014-2015 state-of-the-art, 7% error on ImageNet challenge)
* First part on VGG, second part on both

§ 224x224

Convolution network Fully-
7= copReglsd goftmax
., 1414 Classjfication
7xX7
Max .
ax "pooling pooling
pooling . ccxeeses - 1000
pooling . .-e-e=eTT 3 VLl

[}/ pooling _...---"""" - 4096

Generate Insights: Explore at the End

No convolution anymore
Close to final output

Use PCA (NN = linear + transformation)

224x%x224
Fully-
125352 Convolution network connected
56Xx56 ~—n o Softmax
28x28 Classification
14x14
7x7
Max .
Né%’é“ng pooling
pooling . acscsewees - smmmvesne 1000
----------- - -y Ly
--------- 4096

Corruption Traces before the Fully-
Connected Layer

* Do a PCA on layer-14 features (after the last convolutional layer)

PCA Dimension 2

200 r 4 -
o Normal o ~ © Normal
150 o Adversarial oy g P 3r @ © Adversarial
100 [n 2r
¢
o &
o = o
or SO0 o
S
i =l
-50 < 1 g
g
-100 - 27
150 - -3+
0
_200 1 | 1 ! 1 I | _4 |
-150 -100 -50 0 50 100 150 200 -8 -6 -4 -2 0 2 4

PCA Dimension 1

PCA Dimension 2830

Fundamental Aspect of ML

* Machine learning works only on the test data if it's sampled from the
same distribution with training data

* No good result expected on adversarial images Extrapolation
since never trained on it Area
* Solution?
* Enlarge training set (add adversarial examples)
(Goodfellow et al. 2014) Inter-
* Led to many GAN-type approaches polation

* Or just detect the boundary of training
distribution and refuse to work outside

Training examples

A conservative approach

* Never do extrapolation!

* Instead, identify intruder attempts for doing so

* Has been studied in machine learning, e.g. self-aware learning (Li et al. 2008)

* Instead of “adding adversarial examples back to training”

 Which never ends!
Extrapolatio

DANGER
ZONE!

polation

vulnerable!

Extrapolation
Area

Vs, Inter-
polation

Still

Extremal Value

Back to Difference between Normal and

Adversarial Examples

12

Eigenvector Number vs. Extremal Value

——Normal examples
Adversarial Examples

ﬂlil.'i |I .I M Ut"ﬂr’i Mi !l

M‘wlw»

500 1000 1500 2000 2500 3000 3500 4000 4500
Eigenvector Number

1.6

Normalized Standard Deviation
o
o

0.6

—

Normalized Standard Deviation

——Normal examples
— Adversarial Examples

0

500 1000 1500 2000 2500 3000 3500 4000 4500
Eigenvector Number

How to observe distributional statistics
from a single image?

* An image is a distribution of pixels

* Each convolutional layer output is a distribution of pixels
* K-dimensional distribution on k filter outputs

* Try not to use features to train directly (overfitting!)

 Instead, collect statistics:
e Mean absolute value of normalized PCA coefficients

* Minimal and maximal values
e 25-th, 50-th and 75-th percentiles

Visualization: 2 types of adversarials

LBFGS-Adversarials (Nguyen et al. 2015)

Giant Panda

Shark

EA-Adversarials (Nguyen et al.

-

4

-4

Y 4 . »

™) ! ’ s y

T \ ' Y !

‘-;')| ’ .)

0 5 ’ 3 |

") | ¥]

0 5 ! 5 '

o L . 3

- X ’ 5 v

% S ’ ! !

> ¥ ¥ F %

" . . 4

.. o E o = A

King penguin starfish]I baseball
- - O O N

e B~ B
- O
- 0o
sSE=Es
- OO om0 o
- O 1‘-r|: =
- i) &
=0 OO e
- s OO e -
- - S -
- .- -

freight car

remote cantrol]I

peacock

“ African gray I

Mean Value of PCA Projected Value

1.6

1.4

1.2

0.8

Visualization:

PCA Projected Value Conparison on AlexNet Layer 1

——— EA-adversarials
LBFGS-adversarials
~———— Normal

o e A

¥ WY

10 20 30 40 50 60 70 80 20
Feature Indices

Mean Value of Max Extremal Value

0.7

0.6

0.5

0.4

0.3

0.2

Max Extremal Value Conparison on AlexNet Layer 1

— EA-adversarials
LBFGS-adversarials
~———— Narmal

10 20 30 40 50 60 70 80 90
Feature Indices

Mean Value of 50 Percentile Value

Percentile 50 Value Conparison on AlexNet Layer 1

1.5
— EA-adversarials
LBFGS-adversarials
1ir Normal
05 \/
L D \ In dJ‘ Aﬂ M, =
0 ~ b q V ‘ W u |
05
AF
15) : . . L)) . \
0 10 20 30 40 50 60 70 80 90

Feature Indices

Single-Layer Results

* Single-layer results are OK, not fantastic
* Imaginable with oversimplified features
* EA-Adversarials much easier to detect

Table 1. Classification Result with AlexNet for Normal vs. Table 2. Classification Result with VGG-16 for Normal vs.

LBFGS-adversarials [LBEGS-Adersarials
Network Layer 2nd 3rd 4th
Network Layer 2nd 3rd 4th Accuracy 721+0.7 84.1+0.7 80.3+0.6
Accuracy [575+£0.7 67.3£0.7 709+ 0.6 | [Nerwork Layer sh e o
Network Layer Sth 6th Accuracy | 81.4+£0.9 743+06 73.9+06
Accuracy 749+09 7895+£0.6 Network Layer 3th Oth 10th
Accuracy 74.2+07 T71.2+£0.7 743+£0.8

Table 3. Classification Result for Normal vs. EA-Adversarials
Layer 2nd 3rd 4th

Accuracy | 93.45£0.69 98.3+£0.73 97.9£0.57

Classifier Cascade

* Proposed by Viola-Jones in 2001 for face detection
* |dea: discard large amount of examples that are simple to classify
 Leave those hard to classify to the next (more expensive) stage

X F F F
—» SC1—» SC2+—» ..—» SCn —»

ooy "

Classifier Cascade

* 1 classifier for each convolutional layer

* Classify on layer 1:
* Normal: do not continue
* Unsure: go to layer 2
e Classify on layer 2...

2ol sc1 1w sc2 s .. —»{ SC

ooy "

Result

LBFGS Adversarials EA-Adversarials
AlexNet: 83.3% Accuracy VGG: 90.7% Accuracy AlexNet: 97.3% Accuracy
90.7% AUC 93.5% AUC 98.2% AUC

ROC of Cascade Method

Performance Comparison ROC of Cascade Method

10 . — 10 . — 1.00;
- _'_--_._'_'_-_-_._____'_______._
09
099+
Q08|
0.7 088}
0.6H
097+
05
0.4 - 0.96
03
095
— OpenMax:AUC =[[0.81339303]] acc = [[0.7225]] 02
— Cascade:AUC = [[0.90788181]] acc = [[0.8337235]] — AUC =0.934654248192 and ACC = 0.90665 — AUC =0.981902190955 and ACC = 0.973375
%% 02 04 06 08 10 obo 02 04 06 08 10 09475 02 02 06 08 10
(a) (b) (c)

Figure 7. (a) Comparison Between OpenMax detection Methods and Cascade Classifier: The blue curve represents the performace of
OpenMax Method, and green curve represents the perfornace for Cascade Classifier.(b) Overall ROC Performance Curve of Cascade
Classifier Trained on VGG-16 Network. (¢) Overall ROC of data generated from EA-adversarials dataset on AlexNet.

Conclusion

» A different approach geared toward Al safety
* Conservative
* Avoids extrapolation

* Try to perform “distribution tests” to test whether an example comes from
input distribution

* Classifier cascades on convolutional filter statistics work well

* Future work:
* Generative Adversarial Network (GAN) -type approach to detect intrusion

Image Recovery for LBFGS-adversarials

* Insight: LBFGS adversarials attacks the extremal value of gradient
output

* This is very specific to manipulating pixels to lower the magnitude of
certain outputs

* One can counter even with simple average filtering

Approach Top-5 Accuracy
(Recovered Images)
Original Image (Non-corrupted) 86.5%
3 x 3 Average Filter 73.0%
5 x b Average Filter 68.0%
Foveation (Object Crop MP) [16] 82.6%

Another side of the story

Noise std = 16 Noise std = 32
bell pepper (946), score 0.848 bell pepper (946), score 0.841 bell pepper (946), score 0.531

Noise std = 40 Noise std = 48
bell pepper (946), score 0.294 cucumber, cuke (944), score 0.175

e |t's also not that hard
to contaminate CNN!

