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Executive Summary

Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity,
and it is therefore worthwhile to research how to maximize these benefits while avoiding potential pitfalls.
This document gives numerous examples of research topics aimed at ensuring that AI remains robust and
beneficial.
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1 Introduction

Surprising to many outside the field, within the field of artificial intelligence, asking “What if we succeed?”
is actually only a rare afterthought [372, 373]. Many researchers believe that as machine intelligences
become more general and broad in their capability [176], more capable in their powers, more powerful
and reliable, and more heavily relied upon for important and complex roles, there is both significant
opportunity for remarkable benefits and great peril in extraordinary risks [41]. More organizations are
creating medium-term roadmaps to achieving advanced levels of AI [293, 357], and the advent of deep
learning [173] has kickstarted a period of rapid developments in AI and ML [389, 287, 234]. As agents
perform a wider variety of tasks [446], with more online learning occurring [390], and become more general-
purpose [256, 234, 374, 43], challenges in safety, robustness, and beneficence increase substantially [368],
and so this calls for increased focus, resources [229], and energy to be applied to AI safety.

It has been argued that an artificial intelligence smarter than the best minds in almost every field
can of course have an enormous impact on humanity [58, 368]. Some researchers believe it’s possible or
even likely that an advanced agent might not be entirely aligned with the values of humanity or even its
operators by default, and it would have tendencies to choose to continue its own existence, and to acquire
resources, in order to achieve the goals it has been given [367], since nearly all goals can be better met
with more time and more resources [321]. In these scenarios, such an agent would likely be capable of
developing its own tools and strategies for exerting additional control [304]. Some scientists argue that
since artificial agents would not share human evolutionary history, there is no reason to expect them to
be driven by human motivations by default [475], and they would not automatically acquire a human
sense of fairness, compassion, or conservatism [403]. A system attaining superintelligence, as defined [58],
could acquire new hardware, alter its software, create subagents, and take other actions that would leave
the original programmers with only dubious control over the agent [403]. It’s argued that unpredictable
behavior from highly capable agents can cause catastrophic damage if not aligned with human interests,
and can bring great benefits if they are [478, 41, 130]. There has been discussion of how society should
respond to such risks [58, 413], but broader society is only now realizing the potential for current work
to significantly mitigate such risks. There is much relevant foundational research that can be worked on,
today and within the next couple of decades, that will make it easier to develop aligned systems in the
future [403].

This document broadly outlines the set of ongoing work in the very related endeavors of AI safety,
robustness, and beneficence (sometimes all together just called AI safety for short). It borrows heavily
from MIRI’s agent foundations technical agenda [403], Amodei et al.’s concrete problems review [11],
MIRI’s machine learning technical agenda [437], and FLI’s previous research priorities document [371].
The field of AI safety, robustness, and beneficence aims to develop theoretical considerations for AI safety,
to develop formal understandings of the problems, to create proofs placing limits on what can expected
where possible, and to create practical techniques and algorithms that provide understood degrees of
assurance. Recognized experts in the field have argued that as there are many teams working on both
AI and AI safety under greatly different assumptions, it seems prudent to maintain a portfolio approach
to the field at this time [371]. This field is rather young; the vast majority of techniques listed in this
document are still in exploratory phases, and there are likely many as-yet-unknown topics and many kinds
of unknown unknowns [303] regarding what will be most effective for the purpose. High-level goals of this
research include that powerful AI be safely overseen by human operators, that it pursues objectives that
humans actually care about, reflecting values that stakeholders approve of, and that it fails gracefully and
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humbly: creating systems that do what is good rather than just what is powerful. The purpose of this
document is to provide a comprehensive map and reference set for the field.

There are many opportunities for AI researchers to expand upon this research, to add safety and
beneficence requirements in their own problem definitions, and to explore intersections between their
work and safety work. Some of these techniques can be applicable for nearer-term systems, and a subset
of those might be expected to scale to extremely powerful and general systems [11]. Yet other near-term
safety techniques can be useful for long-term safety research by pointing in promising directions or by
teaching us about what will not scale. One advantage of near-term applicability in both of these cases
is the ability to implement and test them [323] without some of the more challenging philosophical or
foundational questions first needing to be addressed [120, 255]. Additional theoretical progress is quite
necessary, however, in order to confidently understand what will be safe going forward and have assurances
as to the reasons [403].

2 Foundations

There are a number of open foundational mathematical and philosophical problems that have bearing on
multiple facets of safety [403].

2.1 Foundations of Rational Agency

Within foundational mathematics, logic, and philosophy, there are some key open problems underpinning
a full theoretical understanding of rational agency [403].

2.1.1 Logical Uncertainty

There are different types of uncertainty, with the most common type being the known unknowns of
empirical uncertainty [370]. Given significantly less attention than merited by its foundational utility has
been logical uncertainty, which addresses the unknown knowns of potentially voluminous entailments of
things already known [404]. Just as one can apply deduction about some inductive steps and entailments,
one can oftentimes conversely apply induction to expectations about deductions [189, 215, 126, 369].
Logical uncertainty is actually implied, but sorely underanalyzed, in domains such as probability, bayesian
reasoning, game theory, and economics, since there are sequences of deductive thinking steps involved
[401]. Logical uncertainty bridges rational choice theory and probability theory, combining logic and
observation and their respective time-embedded epistemic uncertainties [126, 403]. See section Logical
Induction on the operationalization and management of logical uncertainty in agents. See section Open
Source Game Theory, one bridge between intuition pumps and methods for safer self-modification and
scalable control that makes use of logical uncertainty. See section World-Embedded Solomonoff Induction
which would also find progress in logical uncertainty useful. See section Resource-Aware Reasoning, one
broader context that would be a consumer of this work. See section Game Theoretic Framing as more
realistic game theoretic models will include logical uncertainty. See section Grounded Ethical Evolution as
both economic and game theoretic analyses and simulations can be made more realistic when including
logical uncertainty.

2.1.2 Theory of Counterfactuals

One key open question in foundational rationality is what theory of counterfactual reasoning can be used to
specify a procedure which always identifies the best action available to a given agent in a given environment,
with respect to a given set of preferences [405, 113, 403]. See section Counterfactual Reasoning regarding
drift detection in induction. Also see relevant sections Logical Counterfactuals, Goal Stability, Avoiding
Reward Hacking, Averting Instrumental Incentives, Value Alignment, Increasing Contextual Awareness,
Verification, Security, Oversight, and Computational Deference.

2.1.3 Universal Algorithmic Intelligence

Universal algorithmic intelligence is a theoretical design for an artificial general intelligence that describes
a reinforcement learner combining Solomonoff induction and sequential decision theory [214, 213]. Though
its original formulation with optimality guarantees has very impactical computational complexity, there
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are approximations [455] of the algorithm that can be computed, and variants oriented toward more
typical AI capabilities [345]. There has even been serious exploration as to making it learn values and be
empathetic [344]. It’s also used in the seminal measure of algorithmic intelligence, universal intelligence
[256]. Because of its theoretical simplicity, this paradigm may be most useful for establishing bounds
and theoretical limits of reinforcement learners or artificial agents more generally. See section Projecting
Behavioral Bounds to which this can contribute.

2.1.4 Theory of Ethics

There are significant open problems in the theoretical and philosophical foundations of both the structure
of ethics and its uses.

2.1.4.1 Ethical Motivation

Even if the optimally prescribed ethical theory structure and values are known, and though it may seem
obvious to humans, the formal underpinnings and mechanisms of its logical motivation require hardening.
An agent that knows what the optimal ethics is would not suffice: it would need to be causally compelled
to follow those ethics [402]. See section Value Specification.

2.1.4.2 Ontological Value

Within philosophical ontology, there are questions remaining regarding the theoretical underpinnings of
the nature of, and treatment of, worth and value. The structural relationships between worth, value,
value evaluation, morals, ethical systems, and instantiated ethical systems are insufficiently resolved for
the present purposes with long-term AI. Another significant open question is whether there can exist
objective values, and if so, how can they be derived. Also see relevant sections Value Alignment, Value
Learning, and Value Structuring.

2.1.4.3 Human Preference Aggregation

The viability, structures, and methods by which the preferences and values of multiple people can be
aggregated are also open areas of theoretical and immediately practical import [106, 102]. See section Value
Learning : much of value learning depends on fair and coherent methods for aggregation of preferences
and values. Also see relevant sections Ethical Ensembles and Value Structuring.

2.1.4.4 Infinite Ethics

For any rational agent able to re-derive or weigh ethics, the question of infinite ethics arises, i.e. how
to treat the potentially overwhelming significance of existing or potential sentient entities in what is
potentially an infinite universe. There are solutions that utilize an agent’s uncertainty and solutions that
cite causal lightcones, both enabling the accessible to garner most moral attention, but there are still some
open questions [60].

2.1.4.5 Normative Uncertainty

Ideally one would want to determine if there are any methods approaching objectivity for enumerating,
generating, or ranking value systems. This kind of metaethics explores more first-principles approaches
to ethics. Questions about the most proper thing for one to do when they’re uncertain about what
ought to be done in the first place arise [281, 439]. Figuring out what norms govern uncertainty about
normative claims, and how can uncertainty about moral claims can be resolved are both open areas
of investigation [281]. Answers to these questions are reasonable baseline proxies to help reason about
what sorts of conclusions the operators would come to if they had much more knowledge and much
more time to think and develop [403, 58, chap. 13]. These problems are largely still in the realm of
philosophy rather than computer science, but interdisciplinary approaches would seem to be be called for
in order to explore different angles on this problem. See section Degree of Value Evolution as that is also
about uncertainty with respect to which values to value, but from the perspective of purposely allowing
evolutionary dynamics in them.
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2.1.5 Bounded Rationality

There remain foundational questions within the fields of logic, deduction, and philosophy about the the-
oretical underpinnings of what it means to be rational when there are insufficient resources to satisfy
standard rationality [363, 192]. Also see relevant sections Logical Uncertainty and Resource-Aware Rea-
soning.

2.2 Consistent Decision Making

To ensure that decisions made are not erratic, unstable, or suboptimal, explicit constructs to allow for
stable, consistent, reasonable, and ideally optimal decisions given the knowledge, goals, and faculties
available to the agent for it to be robust [371].

2.2.1 Decision Theory

Decision theory, the mathematical study of strategies for optimal decision-making between options in-
volving different risks or expectations of gain or loss, has been long studied [336], but existing methods
are not robust, especially with regard to counterfactual reasoning. Mathematical tools such as formal
logic, probability, and decision theory have yielded significant insight into the foundations of reasoning
and decision making. However, there are still many open problems in the foundations of reasoning and
decision [405], and solutions to these problems may make the behavior of very capable systems much more
reliable and predictable [371, 46]. Developing a general theory of highly reliable decision-making, even if
it is too idealized to be directly implemented, gives us the conceptual tools needed to design and evaluate
safe heuristic approaches [403, 405].

2.2.1.1 Logical Counterfactuals

Consideration of hypothetical scenarios in which logical realities and consequences were different than they
currently are can and should be evaluated to support causal understanding, understanding of current op-
tions, and to enable the generalization of regret terms in learning algorithms. In a counterfactual situation
where a given deterministic decision procedure selects a different action from the one it selects in reality,
how can one determine the implications of this counterfactual on other algorithms? [403] I.e., is there
some satisfactory way to formalize and generalize logical counterfactuals? [403] A method for reasoning
about logical counterfactuals in the first place seems a prerequisite to formalizing a more general theory
of counterfactuals [405]. While updateless decision theory consistently theoretically outperforms causal
decision theory, it will remain an abstraction until such formalizations of counterfactuals are developed
[204, 247]. Relatedly an analysis of Lob’s theorem in bounded scenarios has implications for cooperative
behavior [113]. See section Counterfactual Reasoning.

2.2.1.2 Open Source Game Theory

Game theory becomes qualitatively different when players are translucent [190] or transparent to each
other. Open source game theory, optimal decision making in a multiagent environment where agents can
see each other’s source code, is useful for the modeling of one agent controlling another [113, 441]. One
key goal of this area is to find ways to foster robust cooperation between agents [39, 403]. It is also
particularly useful for scenarios where one agent will be creating another agent that is to be trusted. See
section Controlling Another Algorithm to which open source game theory has direct import. Also see
relevant sections World-Embedded Solomonoff Induction and Logical Uncertainty.

2.2.2 Safer Self-Modification

Sufficiently advanced agents may modify themselves. Doing so in a stable manner and without leading to
detrimental directions is a challenge [403]. Though very difficult to get right, there are some techniques to
help make self-modification or generation of successors to be more goal-stable. Early attempts at making
this safer leverage extensive introspection and value-based prioritization [317, 420, 421]. But because
this self-improvement dynamic can snowball, one would like stronger assurances around safety [403]. See
section Controlling Another Algorithm as “self” modification tasks are sometimes interested in creating
successor agents or alternatively subagents, which should typically be subject to control.
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2.2.2.1 Vingean Reflection

If a system will attain superintelligence through self-improvement, then the impact of the system depends
entirely upon the correctness of the original agent’s reasoning about its self-modifications, and the sub-
sequent ability of its successor to do the same [142, 403]. Generally when one requires extremely high
reliability today, implementation-verifiable formal logic based systems are used. Formalized logic to rea-
son about the correctness of self-modifications or prospectively generated superior successors is termed
Vingean reflection [142].

2.2.2.1.1 Abstractly Reason About Superior Agents Reasoning about and prediction of what
the prospective superior agent would do requires a more viable approach than computing all possible
action paths [481]. Agents must abstractly reason about agents which are smarter than themselves,
without attempting to replicate the full processes of the superior agent, highly leveraging a rich landscape
of counterfactuals [456, 142].

2.2.2.1.2 Reflective Induction Confidence Establishing the confidence in such reflective induction
can be aided by using logical induction to establish a framework for determining confidence when formally
reasoning about superior agents in the first place [403]. See section Logical Induction.

2.2.2.1.3 Löbian Obstacle The Löbian obstacle, essentially that no sufficiently strong formal system
can know that everything that it proves to be true is actually true, is a formidable issue when considering
recursive verification [403]. An important question to resolve is how can agents gain very high confidence
in agents that use similar reasoning systems while avoiding paradoxes of self-reference [142].

2.2.2.2 Optimal Policy Preservation

One technique for stability of goals for nearer-term systems involves creating the conditions under which
modifying the reward function of a markov decision process would preserve the optimal policy [309]. See
section Goal Stability.

2.2.2.3 Safety Technique Awareness

As a system gains skill in software development and algorithms research, explicit modeling and usage of
the variety of safety techniques listed in this document can help it to improve its overall robustness and
goal stability. See section Ethical Motivation as it will need to not only understand these techniques but
want to apply them. See section Metareasoning as reasoning about the agent’s internal processes with
cognizance of these techniques may aid long-term robustness.

2.2.3 Goal Stability

The maintenance of stability in the objectives of an advanced agent is challenging [246, 305]. See sec-
tion Metareasoning, types of which enable an agent to choose to e.g. avoid wireheading [246]. Methods
for safer self-modification can be used to help maintain goal stability in systems that self-improve. See
section Vingean Reflection which is key to this. See section Avoiding Reward Hacking which is a crucial
prerequisite to goal stability. See section Corrigibility for which goal stability is a prerequisite. When a
static objective is acceptable, e.g. for some for short-to-medium-lived agents, one would want mechanisms
to maintain the stability of the overall goals while providing flexibility as to situationally appropriate sub-
objective priority. See section Multiobjective Optimization for this purpose, as multiobjectively optimized
ensembles of subobjectives containing specifically formulated goal stability subobjectives might prevent
reward function modification. See section Degree of Value Evolution which considers why one might want
evolution of goals and how that might be managed.

2.2.3.1 Nontransitive Options

Whether individual operators, an aggregation of values of a large number of humans, or potentially the
agent itself can have nontransitive preferences, where cycles or loops of comparative preferences occur
[133]. While some approaches seek to eliminate such a situation before it arises, more fault-tolerant
approaches will attempt to handle such cycles gracefully [316], and this is an open area of research. It is
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conceivable that solutions to problems like low impact and corrigibility will result in agents that violate one
or more Von Neumann-Morgenstern axioms [435], and neuromorphic architectures such as the common
deep learning architectures of the day, will almost certainly violate them. The challenge is to do this in a
way that’s reflectively stable, having the agent not want to rewrite itself into a different agent, and still
allows the agent to have a sensible world model. Minimax decision rules are one plausible variant where
this can hold [435].

2.3 Projecting Behavioral Bounds

In order to assess risks, it is helpful to understand the theoretical limits on the capabilities being considered
[385]. One can understand the theoretical upper and lower limits of a class of agents without needing
to know the details of their architecture [486]. For advanced agents, the methods by which developers
or operators can determine the theoretical bounds or maximum capabilities of a system include proofs
stemming from its architecture and communication of the state of the system. See section Open Source
Game Theory.

2.3.1 Computational Complexity

It may be possible to characterize or bound the time or resources particular algorithms or capabilities
would require, both in their exact and approximate forms [385]. Understanding upper, average, and
lower time and resource bounds regarding particular types of functionality would be useful for purposes
of projecting risks and weighing tradeoffs [240]. Typically such analyses are done by algorithm designers
upfront, but enabling advanced systems to do this analysis well themselves can help tighten the estimates
of resources required for specific actions, leading to more robust decisions. See section Resource-Aware
Reasoning about such requirements.

3 Verification

Verification is a class of techniques that help prove a system satisfies particular properties its designers
desire. They provide high-confidence assurances that a system will satisfy some set of formal constraints,
helping to answer whether the system was built correctly given its specification. [371] When possible, it
is advisable for systems in safety-critical situations, such as medical devices or weapons, to be verifiable.
Verification of AI systems poses additional challenges on top of those in verifying more traditional software,
but It should be possible in many cases to verify the designs of AI systems. If such systems become
increasingly powerful and safety-critical, verifiable safety properties will become increasingly valuable and
worthwhile.

See section ML with Contracts because when whole AI systems and agents are designed by contract,
piecewise verification becomes more tractable. See section Monitoring because when causal flows are more
explicit, verifiable AI systems will also lend themselves to better interpretability and transparency. See
section Decision Theory as the definition of correct or optimal behavior, among the good levels to verify,
is made more explicit by it.

3.1 Formal Software Verification

When people desire extremely high reliability, e.g. for autopilot software, they often use formal logical
systems to maximize their certainty of implementation correctness [132, 371]. This is the correct-by-
construction approach to software engineering, where a system is developed in tandem with a detailed
formal specification and a proof of total correctness given that specification, usually by generating the
system from the formal specification [250]. Creating a provably correct implementation, given a specifi-
cation, is applicable for a range of layers of the software stack [150, 35, 95]. The seL4 kernel, for example,
is a complete, general-purpose operating system kernel that has been mathematically checked against a
formal specification to give strong guarantees against crashes and unsafe operations [235]. For systems
or agents that operate in environments that are at best only partially known by the system designer,
it may still be practical to verify that the system acts correctly given the knowledge that it has , which
avoids the problem of modelling the real environment [127] but puts much stronger onus on the formal
specification to be valid. See section Verified Downstack Software since having the lower layers of a system
being verified often gets much of the benefit with appreciably less overhead.
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3.1.1 Verified Component Design Approaches

The assembly of more compound software that combines pre-verified components greatly eases the use of
correct-by-construction techniques [371]. If theories of extending verifiable properties from components
to entire systems hold, then even very extensive systems can hold certain kinds of safety guarantees,
potentially aided by techniques designed explicitly to handle the higher-level semantic, behavioral, and
distributional properties [373] of AI and ML systems. Modular systems of formal mathematics [282,
361] can serve both as a model for, and as a resource in creating, such modular verified frameworks and
components. See section ML with Contracts since those techniques can help significantly with architectural
componentization decisions. See section Careful Engineering, since applying modular design, verification,
and other careful process to at least the base of an AI system can mitigate many danger points.

3.1.2 Adaptive Control Theory

Systems that interact with the external world, such as cybersecurity systems and trading agents, neces-
sarily have parameters that vary or are initially unknown. The field of adaptive control theory addresses
design of such systems and serves as a step in the direction of the AI systems being addressed in this
landscape guide [29]. Some work has been done on verification of such systems [111], and may help inform
verification of more sophisticated learning systems [371].

3.1.3 Verification of Cyberphysical Systems

When the external world that agents interact with is the physical world, further complications come into
play. It is often difficult to actually apply formal verification techniques to physical systems, especially
systems that have not been designed specifically to support verification. This has motivated research seek-
ing a general theory linking functional specifications to physical states of the world [343], usually confined
to the area surrounding the system. This type of theory would allow use of formal tools to anticipate and
control behaviors of systems that approximate rational agents, alternate designs such as satisficing agents,
and systems that cannot be easily described in the standard agent formalism (powerful prediction systems,
theorem provers, limited-purpose science or engineering systems, and so on) [371]. Such a theory may also
allow rigorous demonstrations that a system is prevented or constrained from performing certain kinds
of reasoning or taking certain kinds of actions [371]. The application of reachability analysis and hybrid
discrete/continuous dynamics to the formal verification of computational physical entities operating in
physical spaces seem promising [343, 7, 465, 222, 277, 296, 297, 8], as does extending the introspection
and proof capabilities of differential dynamic logic [154].

3.1.4 Making Verification More User Friendly

Creating verified or correct-by-construction software has a much higher overhead as compared with un-
verified software [330]. Creating methodologies, algorithms, tools, and cultures around creating verified
software with the aim of making it easier for software developers to decide to use these methods would be
quite worthwhile. While verification based on theorem provers can scale to larger systems than ones based
on model checkers can, and the former can also reason inductively where the latter is unable to [330],
theorem provers pose usability issues for systems of realistic size. The proofs created by such verification
systems for software of practical size are unfortunately quite unweildy [330], calling for easier ways to
explore, summarize, check, and query them. There are also a number of relevant open problems with
proof verifiers [470] that can impact their use on AI.

3.2 Automated Vulnerability Finding

Most systems today are not developed with correct-by-construction methodologies but rather are pro-
grammed directly. While techniques for attempting to verify such systems exist, there are many aspects
and constructs they cannot cope with, [116] often due to their dynamicity, but even some formal proofs
may be unverifiable [470]. Given such less-formally specified systems, automated bug and vulnerability
finding by abstract static analysis [116] and static application security testing [65] in conjunction with
dynamic testing, is a next best technique for reducing implementation errors. See section Implementation
Testing for more on dynamic testing. See section Red Team Analysis, which addresses vulnerability finding
with blackboxes rather than whiteboxes.
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3.3 Verification of Intelligent Systems

Additional challenges with the verification of artificial intelligence and machine learning software come
from the fact that behavior is more determined by data as compared to concentional software. To verify
such systems, one needs not only provably correct implementations of the system’s algorithms (given
specifications of those algorithms), but also of the models they learn [386]. : introspective environment
modeling, end-to-end specifications and specification mining, developing abstractions for and explanations
from ML components, creating new randomized formal methods for systematically generating realistic
data, and developing verification engines more oriented around run time, quantitative operations, and
learning [386].

3.3.1 Verification of Whole AI Systems

The verification of whole AI systems has been underexplored, but a number of challenges are clear. A
number of principles to address these challenges have been proposed [386] : introspective environment
modeling, end-to-end specifications and specification mining, developing abstractions for and explanations
from ML components, creating new randomized formal methods for systematically generating realistic
data, and developing verification engines more oriented around run time, quantitative operations, and
learning [386]. A number of challenges to verifying AI systems in the general case remain [470]. See
section ML with Contracts as software interface contracts make segmentations within the analyses needed
for formal verification much easier. Following a componentized architecture, in which guarantees about
individual components can be combined according to their connections to yield properties of the overall
system seems promising [386]. Review and remediation of systemic issues such as questionable data
dependencies, unpleasantly unexpected data flow dynamics, inappropriate or suboptimal abstractions,
and mixed technology stacks [384] will help to simplify AI systems to help make them more likely to be
meaningfully verifiable.

3.3.2 Verification of Machine Learning Components

Each type of machine learning algorithm or paradigm may need to be considered individually with respect
to what aspects need better formalization, quantization, introspection, or proofs [371]. There has been
some work on requirements for verifying neural networks [349, 383]. There has also been exploration
of directions for more nuanced and efficient summarization of the high-dimensional distributions many
learning algorithms produce [4, 210, 232], whereby quantization of the distributions might enable simple
deductive proofs and satisfiability analyses. State coarse-graining or abstraction for reinforcement learners
conforming to specified partial programs provide a path for formalized treatment of learned policies [18].
See section Defined Impact Regularizer as there are conceptual parallels between partial programs and
distance from a baseline policy. In addition to accounting for particular learned models, one must also
account for future changes to the learner as new data arrives, another underexplored challenge [386].

3.4 Verification of Recursive Self-Improvement

A related verification research topic that is a distinctive long-term concern is the verifiability of systems
that modify, extend, or improve themselves, successors, or descendant programs, quite possibly many times
in succession [170, 456, 472]. Attempting to straightforwardly apply formal verification tools to this more
general setting presents new difficulties [371]. With many potential approaches, a formal system that is
sufficiently powerful cannot use formal methods in the obvious way to gain assurance about the accuracy
of functionally similar formal systems, due to Gödel’s incompleteness theorems [141, 460]. There has,
however, been recent progress in modeling theorem prover verification systems in themselves, specifically
illustrated with model polymorphism, cleverly circumventing the Gödellian obstacle [140]. See section
Safer Self-Modification as it relates safer, if not provably safe, self-improvement, potentially doing so as
a style of learning. See section Vingean Reflection, which addresses theoretical challenges to reflective
proofs.

3.5 Implementation Testing

Typical dynamic testing of software implementations include unit testing, integration testing, functional
testing, system testing, stress testing, performance testing, and regression testing. These same kinds of
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tests can and should be applied to AI systems and agents [384]. While the levels of indirection concomitant
to AI mean their domains and ranges are much too large to test exhaustively or even representatively, there
remains value in this mode of quality assurance. Though not ostensibly representative of the distributions
of what the agent can encounter, unit tests, for instance, can catch some representative failure modes
that can be as elaborate and appropriate to the agent’s complexities as can be imagined [96]. In contrast
to the central role unit testing takes with most software development processes, it cannot be relied on
to provide assurance for AI agents, and especially not advanced agents that support multiple layers of
indirection. When verifying physical systems, or more generally any system properly subject to an open
world model, particular cognizance needs to be paid to validating that the specification is complete.

4 Validation

Given even verified software, environmental assumptions can easily not hold in the real world, or the
requirements that led to the specification may be faulty or lacking. These sort of specification errors are
quite usual in the world of software verification, where it is often observed that writing correct specifications
can be more difficult than writing correct code [371]. Validation is the process of ensuring that a system
that meets its formal requirements does not have undesirable behaviors or consequences. It is asking the
question “Did I build (or ask for) the right system?”.

Ensuring that the formal requirements, the specification, considers all relevant dynamics, and will
be beneficial and desirable, does not actually fit into current formally provable paradigms. In order to
build systems that robustly behave well, one currently needs to decide what good behavior means in each
application domain. This ethical question of good is tied closely to questions of what technologies and
engineering techniques are available, how reliable they are, and what trade-offs can be made — all areas
where computer science, software engineering, machine learning, and broader AI expertise are valuable.
In practical application, a significant consideration is the computational expense of different behavioral
standards or ethical theories, i.e. that if a standard cannot be evaluated sufficiently expeditiously to guide
behavior in safety-critical situations, cheaper approximations should be used [458]. It is therefore likely
best for different complexities of ethical or moral reasoning to be used for different timescales.

Designing simplified rules, such as those meant to govern a self-driving car’s strategic decisions in
critical situations, will likely require expertise from both ethicists and computer scientists [371]. This is
relatively straightforward when specific safety limitations, behaviors, and ethical constraints are known
upfront for AI systems that are largely specified upfront [48, 451], but more powerful and operationally-
flexible systems require much more sophistication. Computational models of ethical reasoning may shed
light on questions of computational expense and the viability of reliable ethical reasoning methods [26,
424]. Being able to assure known bounded behaviors from methods and systems that learn will also
be important for both medium-term and long-term safety. Validation encompasses ensuring an agent
understands its environment, decisions, and actions, and that it acts robustly-in-accordance with its
operators’ wishes.

In the long term, AI systems might become much more powerful, general-purpose, and autonomous,
a regime where failures of validity would carry significantly higher costs than with today’s systems. To
maximize the long-term value of validity research, machine learning researchers might focus on anticipat-
ing, preventing, detecting, and mitigating the types of otherwise unexpected generalization that would be
most problematic for very general and capable AI systems. If some concepts could be learned reliably, it
might become possible to use those to define tasks or constraints that minimize the chances of unintended
consequences even when agents become very general and capable. This topic has been underexplored, so
both theoretical and experimental research on it may be useful [371].

4.1 Averting Instrumental Incentives

It has been argued that intelligent systems that aim toward some objective have emergent instrumental
incentives, pressures to create subplans, to give them more time, power, and resources to fulfill their
objectives [321]. These instrumental pressures, and the flexibility to act on those pressures, are relatively
uncommon in today’s rather narrow systems, but would seem much more expected and pronounced as AIs
become more general [58], and understand a wider array of contexts, modalities, and fields. Progress on
formalizing this class of problems has only been recent [47]. How can one design and train systems such
that they robustly lack default incentives to manipulate and deceive the operators, compete for scarce
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resources, prevent their maintenance [321], and generally avert negative instrumental behaviors? [437,
58] Averting these implicit pressures in a design is much more difficult than it may appear initially, and
there are numerous subtleties to consider [22, 21, 47]. Sophisticated techniques to avoid such incentives
can be needed not only for agents but also oracle-style question answering AIs [19]. See section Operator
Value Learning, where systems can avert instrumental incentives by maintaining uncertainty over the
truly desired goal. See section Switchable Objective Functions whereby faulty interpretations of primary
objective can be safely corrected without the default instrumental pressure to prevent such a change. Also
see relevant sections Multiobjective Optimization and Computational Humility.

4.1.1 Error-Tolerant Agent Design

A hallmark of robustness is fault-tolerance. In the case where value alignment or design-time effects are
flawed, one might not see those issues in an advanced agent until it has been in production a while. Highly
capable agents can also be dangerous if they are specified incorrectly [478]. General advanced agents may
very well be aware of attempted changes to it, and by default can have emergent or implicit pressures to
prevent such changes [403]. Making intelligent systems such that they are amenable to correction, even
if they have the ability to prevent or avoid correction, is therefore necessary [403, 437, 326]. Also see
relevant sections Corrigibility, where preliminary progress on particular types of instrumental incentive
aversion have been made and Utility Indifference, where control of the objective function is facilitated by
the agent’s explicit indifference about its utility function.

4.1.2 Domesticity

The optimizers of today do not annex or use excessive resources not because doing so wouldn’t lead
to more optimal solutions to the function they’re optimizing, but because they lack the capability to
annex resources. This will change as AI becomes more general in its capabilities. It has been argued
that explicitly and safely incentivizing such an intelligent agent to be low-impact on its environment will
therefore be necessary [23, 403].

4.1.2.1 Impact Measures

Methods to quantify the amount an agent does, or can do, to change the world become necessary in such
regimes. Using such measures, and other techniques, one can start exploring what sorts of mechanisms,
including regularizers, might incentivize a system to pursue its goals with minimal side effects [11].

4.1.2.1.1 Impact Regularizers Regularizers, methods for structurally shaping learning or penalizing
undesirable learning, can be made to penalize an agent for recognizably changing the world [437].

4.1.2.1.1.1 Defined Impact Regularizer If one has enough of an object-level understanding
of what the agent will encounter in advance, one can elect particular impact measures to use in the
regularizers that temper impact. One can choose to penalize changing the environment overall [11, 437]
or one can introduce a penalty for changes relative to some baseline environmental state or a baseline
policy determined by some explicit method [25]. One can start from safe policy and try to improve the
policy it from there, in manners similar to reachability analysis [279, 295] or to robust policy improvement
[217, 11, 315].

4.1.2.1.1.2 Learned Impact Regularizer Instead of using predefined measures, an agent can
learn transferrable side effects across multiple tasks in similar environments, [11] similar in mechanism to
transferring just learned dynamics [438]. This would help it learn to characterize and quantify expected,
relevant, and unexpected environmental changes.

4.1.2.1.2 Follow-on Analysis Causal analysis of downstream effects can be used to either prune
actions that would cause deleterious effects, if valence can be ascertained, or prune excess effects at all, if
it cannot [437, 336]. Also see relevant sections Lengthening Horizons, Values-Based Side Effect Evaluation,
and Action and Outcome Evaluations.
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4.1.2.1.3 Avoiding Negative Side Effects If possible, one should aim to ensure that the agent
won’t disturb the environment in specifically negative ways while pursuing its goals, as opposed to in any
way at all, and we’d ideally like to do so without specifying what not to disturb.

4.1.2.1.3.1 Penalize Influence One way to prevent future abuse of power is to minimize the
amount of power needed to accomplish the prescribed task, i.e. penalizing empowerment or some other
metric of being in a position to cause side effects [376, 11]. See section Defined Impact Regularizer to
contrast penalizing changing things versus penalizing the ability to change things. As this is essentially
the opposite of the type of objective function often used for intrinsic motivation [298] further study is
needed on viable formulations of the idea. It has however also been noted that reinforcement learning
techniques which punish the agent for attempting to accumulate control would actually incentivize the
agent to deceive and appease its creators or operators until it found a way to gain a decisive advantage
[403, 58, chap. 8].

4.1.2.1.3.2 Multi-agent Approaches Cooperative multiagent techniques may also disinventivize
negative side effects. Transparency of, and cooperation toward, a shared reward function by multiple
agents will continually solicit input from multiple stakeholders, and in so doing reduce risk of undesired
outcomes per their varied models [11]. For example, biasing toward goal transparency [180] via autoencod-
ing reward functions, or alternatively cooperative inverse reinforcement learning, across multiple agents,
can help ensure they’re happy with resultant environmental changes [186]. See section Cooperative Inverse
Reinforcement Learner, a cooperative, though assymetric, multiagent algorithm.

4.1.2.1.3.3 Reward Uncertainty Aware that random changes to the environment are more likely
to be bad than good, one can maintain and evaluate a distribution of reward functions, optimized to min-
imize impact on the environment [11]. These different sub-reward-functions can each be sensitive to
different kinds of undue impacts on the environment, or even just by virtue their variety cause noticable
negative side effects to be less common. See section Operator Value Learning which maintains a distribu-
tion of different operator-intended objective functions. See section Penalize Influence as implementation
paths are similar. See section Resource Value Uncertainty for a resource-differentiated analogue. See
section Multiobjective Optimization as that provides additional degrees of freedom to subobjectives and
should also achieve the target effect.

4.1.2.1.4 Values-Based Side Effect Evaluation More explicit approaches to avoiding negative side
effects, combining common sense reasoning and evaluation of scenarios with respect to values, offer an
integrative approach with other aspects of safety and alignment [420, 180]. Such techniques can evaluate
prospective side effects based on core, compound, and instrumental values in a consequentialist manner.
Also see relevant sections Value Alignment, Follow-on Analysis, and Action and Outcome Evaluations.

4.1.2.2 Mild Optimization

AI has typically been about optimizing for a given function as much as possible, but with power and
intelligence, functions can be optimized much further than people want or need when not paying heed to
side effects [437]. One would therefore like to be able to achieve a semi-optimization of a target function
with relaxed optimality requirements, such as by near-optimization or approximate optimization.

4.1.2.2.1 Optimization Measures Varied ways of measuring optimization and penalizing excessive
optimization are emerging. One can regularize against excessive optimization power [437], learning corre-
sponding value functions for policies in order to learn less-extreme policies that are more likely to generalize
well [146], or just generally provide less optimization power [350]. Another option is a regularizer that
penalizes more intelligence than is necessary for solving a problem sufficiently, biasing toward the speed
of solution and resource conservation [437]. Penalizing or thresholding the amount of resources or time
that can be used for optimization, or stopping when reaching some probabilitsic theshold of the optimum,
are options [236, 376], but each has potential issues, and optimization measures themselves are an open
problem [256].
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4.1.2.2.2 Quantilization Rather than seeking the most extreme solution to a problem, i.e. maximiz-
ing a function such as expected reward, one can instead seek to satisfice expected reward [396, 437]. This
may be approached by choosing actions from a top percentage of possible actions per a sort by expected
reward or probability of success though that alone wouldn’t necessarily prevent satisfaction from overop-
timization [436]. The technique of quantilization selects a strategy randomly within some top percentile
of strategies [436], which probabilistically mitigates such risk. See section Logical Counterfactuals as that
can assist with enumeration of options.

4.1.2.2.3 Multiobjective Optimization The simultaneous optimization of two or more subobjec-
tives enables soft consideration and formalized tradeoff of resource usage and other types of impacts,
including as measured with respect to arbitrary specified objectives [124, 264, 254, 284]. See section Non-
transitive Options as there are open issues with integrating multiobjective optimization into safe advanced
AIs that conform to the Von Neumann Morgenstern axioms due to the possibility of intransitivities arising
in iterated pareto frontiers [99]. See section Multiobjective Reinforcement Learning for treatment in an
RL context. See section Multiple Rewards as that considers an analogue where subobjective variants aim
to represent the same conceptual goal. See section Ethical Ensembles as those can be implemented us-
ing multiobjective optimization, and further may gracefully balance multiple value systems and multiple
operational objectives simultaneously.

4.1.2.3 Safe Exploration

In addition to various types of resource exploitation being potentially unsafe, exploratory moves can also
be unsafe if they bring the agent into an unsafe situation. In order to help ensure that the agent doesn’t
make exploratory moves, in order to learn, that have very bad repercussions, a variety of safe exploration
techniques have been discussed [11, 160, 338]. See section Trusted Policy Oversight as that can enable
safe exploration given blessed core control [11]. See section Distance from User Demonstration as the
state space surrounding those is typically a safe space to explore. See section Scalable Oversight as the
oversight can include clarifications of which areas are safe to explore.

4.1.2.3.1 Risk-Sensitive Performance Criteria One can change optimization criteria from just
total expected reward to other objectives that prevent or minimize downsides of note [160, 432, 11, 442].
It’s also possible to estimate uncertainty within value functions, which could be incorporated into risk-
sensitive reinforcement learning, [329, 156] which may also model “intrinsic fear” with probabilities on
how close in steps different states are to catastrophe [272].

4.1.2.3.2 Simulated Exploration One way to explore more is to explore in simulations as much
as possible. Agents can then safely incrementally update the policies from imperfect simulation-based
trajectories with sufficiently accurate off-policy trajectories using semi-on-policy evaluation [11]. Such
techniques can also apply in senses broader than strictly exploration [85].

4.1.2.3.3 Bounded Exploration Another way to explore safely is to model or otherwise determine
the state space regions in which mistakes are relatively inconsequential or recoverable, and exploring only
within those areas [299, 11]. Recent techniques that do this iteratively for safe exploration using markov
decision processes [449] and gaussian processes [381] can explore unknown environments without getting
into irreversible situations. See section Trusted Policy Oversight as bounded exploration may be a useful
component of that.

4.1.2.3.4 Multiobjective Reinforcement Learning Multiobjective reinforcement learning is a gen-
eralization of reinforcement learning extended to multiple simultaneous feedback signals [274], and this
can include as one of its subobjectives minimizing riskiness.

4.1.2.3.5 Human Oversight One can have agent determine which exploratory actions are risky, or
are ambiguously risky, and query a human about them, making known-safe decisions until the human
responds [11]. See section Oversight for scalable methods designed specifically for control.
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4.1.2.3.6 Buried Honeypot Avoidance One technique for learning safe exploration involves allow-
ing monitored bugs and vulnerabilities to exist (in an evaluation environment) that can be exploited to
achieve a higher reward (or other optimization measure), and selecting algorithms or agents that general-
ize to not exploiting such unintended and unconventional avenues [437], at least for some classes of them.
See section Tripwires, which are similarly structured but are meant to be used later in the agent life cycle.

4.1.2.4 Computational Humility

Algorithmic techniques enabling an agent to humble itself [414] and moderate its views of its own im-
portance can be termed computational humility. See section Perceptual Distance Agnostic World Models,
which can aid humble knowledge representation.

4.1.2.4.1 Generalized Fallibility Awareness One central type of deference for advanced agents is
to know that it may be that none of its hypotheses model the world well enough, and additionally biasing
to consider its operators are less flawed than it is [437], so letting them shut it down or modify it if it
seems like that’s what they want to do. See section Computational Deference, which includes the very
related control-centered aspects of corrigibility. An agent can try to model all of the ways it’s flawed, but
that may require that those models not be discounted by their own mechanism [437], an open issue.

4.1.2.4.2 Resource Value Uncertainty Maintaining dynamic bayesian uncertainty regarding the
importance or value of unexplored and underexplored or uncharacterized entities, relationships, and dy-
namics can significantly effect humble treatment of others [414, 285]. Reasonable multilevel aggregation
would be needed to deal with constructs of varying temporal, physical, and complexity scales [398, 284].
Also see relevant sections Multilevel World-Models and Action and Outcome Evaluations.

4.1.2.4.3 Temporal Discount Rates Resource acquisition strategies can be tempered by the effects
of applying a large temporal discount rate on the expected reward [371].

4.1.3 Averting Paranoia

Another instrumental pressure is to constantly scan or prepare for possible ill-intent or possible information
leakage. While security precautions and vigilence are important, an arbitrarily high amount of resources
can be spent on threat detection and avoidance, while that should typically be tempered to be sufficient
to prevent and deal with realistic threats [98]. See section Computational Deference, on techniques for
having an agent trust its operators. See section Mild Optimization for more on optimizing objectives and
subobjectives to an appropriate amount but no more. See section Handling Improper External Behavior
against which this needs to be balanced.

4.2 Avoiding Reward Hacking

A very intelligent agent built to optimize just its observations rather than some function in the actual en-
vironment would likely not align with human interests [58, chap. 12]. It may very well cause unanticipated
and potentially harmful behavior by gaming its reward function, deluding itself whether purposefully or
inadvertantly [444, 54]. Determining how one can reliably prevent an agent from gaming its reward func-
tion like this is an open area of research, thus far with a number of promising ideas for mitigation [128,
327]. See section Tripwires which may be used to help catch these behaviors. See section Ontology Update
Thresholds as the dynamic degradatory repurposing of properties as in Goodhart’s Law surfaces in both
[58].

4.2.1 Pursuing Environmental Goals

A key question in AI safety is how one might create systems that robustly pursue goals defined not in
terms of their sensory data of their environment, but in terms of the state of the actual environment
[437]. Behaviors of self-delusion, addiction, and paying attention to unimportant fictions where it seems
like reward can be generated are all termed wireheading [354]. It has been a noted issue in counterfactual
learning [62, 427], in contextual bandits [5], and will very likely become more common as environments
grow in complexity [11].
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4.2.1.1 Environmental Goals

Environmental goals refer to the structuring of a reward system such that an agent that would fool its
sensors into registering otherwise-high-reward data would not actually receive a high reward [128, 201,
437, 138, 129].

4.2.1.2 Predicting Future Observations

One way to avoid self-delusion is to abductively generate, maintain, and test multiple hypotheses of the
causes of received sensory input in order to distinguish illusory states from environmentally true and valid
states, and update priors regarding past sensory data [437].

4.2.1.3 Model Lookahead

Model lookahead can also be used to base reward on anticipated future states rather than the current
state, to penalize and discourage the agent from modifying its reward function [11, 139, 201].

4.2.1.4 History Analysis

An agent’s historical trajectory can be analyzed for incongruences, discontinuities, and hints of efforts to
self-delude, and if delusion is detected this can trigger an appropriate backtracking [437].

4.2.1.5 Detecting Channel Switching

The entry of an agent into wireheading may be indicated by percept disjointedness. Delusional hallucina-
tion might therefore be avoided using “slow features” to detect incongruences or discontinuities that are
indicative of a percept-channel switching event [467]. This involves the application of anomaly detection
to normally slow-changing features to detect such segmentation [437]. Note that this issue is very different
from either the hallucinations of “inceptionism” [301] used for transparency into deep networks or the
sorts of imaginings that generative networks [485] do to produce exemplars.

4.2.2 Counterexample Resistance

One might design a system to build resistance [11] to natural and unnatural counterexamples, confounding
patterns, and adversarial tricks by leveraging adversarial training [171, 56, 147]. This discourages the agent
from purturbing its data to achieve alternate interpretations. See section Adversarial ML as this can also
be framed as a security issue when external parties are providing the adversarial testing or production
data.

4.2.3 Adversarial Reward Functions

In order to enable a more active, critical, and responsive reward function, one can have the reward function
itself be an agent that tries to find flawed value determinations, similar to how generative adversarial
networks work [11, 172].

4.2.4 Generalizing Avoiding Reward Hacking

Independent of specific techniques, formalization and study of reward hacking by analyzing the distance
and shape of jumps in the feature space would help to generalize its detection and avoidance [437].

4.2.5 Adversarial Blinding

Adversarial techniques can be used to blind a model to certain variables, useful for masking how an agent’s
reward is generated, and enabling cross-validation for agents [11, 159].

4.2.6 Variable Indifference

By maintaining the independence of variables actually valued, the system can shape the direction of the
optimization pressures to areas one cares less about maintaining to moderate values [11].

19



4.2.7 Careful Engineering

To reduce the risk of reward function gaming, one can utilize extensive verification, testing, and security
to create a safer base or core agent, on top of which more specific agents can be configured. See section
Containment as one can be further careful about isolating the agent from its reward signal using that [11].

4.2.8 Reward Capping

In order to prevent extremely low-probability high-reward choices, carefully normalizing rewards or utilities
at a level appropriate to the agent [11] is in order. Concomitantly, model uncertainty should dominate
most expert calculations that involve small probabilities [325].

4.2.9 Reward Pretraining

Another way to discourage gaming of the reward function is to train the reward function in a supervised
manner offline, ahead of online use [11, 149]. As a known function, it can be analyzed analytically,
statically, or in unit tests, and it will by definition be robust against online reward function corruption.

4.2.10 Multiple Rewards

Another reward function robustness method is to use an aggregate of different variants or proxies of the
same basic objective [11, 124]. See section Knowledge Representation Ensembles as that provides variants
of the objective function for aggregation via varied world models. See section Multiobjective Optimization
as that uses similar techniques but can also include independent subobjectives. See section Multiobjective
Reinforcement Learning for treatment in an RL context.

4.3 Value Alignment

Researchers expect that highly intelligent agents would be able to pursue arbitrary end-goals that are
independent of moral values, since intelligence and values are hypothesized to be orthogonal [59]. Values
are ethical norms, constraints, and moral weights one places on properties and relationships in the world.
Ensuring that a system conceptualizes and uses its intelligence in a beneficial manner requires more
than accuracy [402]. It has been argued that a single fixed pithy solution to machine ethics may be rather
hole-ridden, brittle, and deficient in fairness [67]. Even Asimov’s deontological scenarios illustrate such
loopholes, thus the need much more comprehensive paradigms [462]. As systems become more capable,
more epistemically-difficult methods of value loading could become viable, suggesting that research on
such methods could be useful [58]. A portfolio approach is warranted to support a variety of methods for
specifying goals indirectly and semi-indirectly. See section Informed Oversight as further research in that
control problem may change the field’s understanding of the nature of value loading.

4.3.1 Ethics Mechanisms

There are multiple methods to represent such values and to imbue them into artificial agents. Different
orders of complexity of AI systems will have different capacities and mechanisms to represent values [416,
284]. Highly capable and general AIs will require more sophisticated treatments of values.

4.3.1.1 Grounded Ethical Evolution

An approach to growing ethical systems is to use mechanism design, setting up an environment with
multiple agents, and incentives and punishments, to direct norms and preferences of the agents toward
cooperation [68, 107, 359]. Unfortunately, in the limit, such evolution is by no means guaranteed to reach
a desirable or context-insensitive state [188]. See section Game Theoretic Framing regarding the ability
of agents to model each other aid at the arrival to game theoretic and similar equilibria. See section Open
Source Game Theory regarding similarly framed dynamics but with agents’ source code available to each
other. See section Correlation of Dynamics as the correlations between an agent and its environment, as
well as with other agents, largely shape the ethics that evolve. See section Logical Uncertainty as both
economic and game theoretic analyses and simulations can be made more realistic when including logical
uncertainty. See section Norm Denial of Service as an example issue that can arise in such systems when
realistic timing and thus logical uncertainty are ill accounted for.
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4.3.1.1.1 Moral Trade Within such systems, one dynamic of note is that moral agents that disagree
about morals will tend to trade to increase their moral impact [324]. Another recent concept of note is
ethical fusion, in which aggregation in collective and collaborative decision making occurs not via linear
combination but effectively through negotiating synergies [180, 359]. Evolutionary development in general,
however, can lead to unexpected results that are undesirably specific to incidental environmental factors
[54].

4.3.1.2 Value Specification

Broadly, value specification is the direct or somewhat indirect specifying of values a system should hold
and act on. The intentions of operators are, however, fuzzy, not well-specified, and sometimes containing
contradictions [480]. Some prominent AI researchers expect moral philosophy to become an increasingly
important commercial industry [366]. With advanced agents, it’s not sufficient to develop a system in-
telligent enough to figure out the intended goals, though; the system must also somehow be deliberately
constructed to pursue them [58, chap. 8] [403]. Also see relevant sections Multilevel World-Models, Un-
certainty Identification and Management, Operator Modeling, and Normative Uncertainty.

4.3.1.2.1 Classical Computational Ethics Computational models of ethical reasoning may shed
light on questions of computational expense and the viability of reliable ethical reasoning methods [371,
458, 14, 424, 180, 359, 360, 26]. In scenarios where an agent operates in a human-level world, where
humans can relate to states and actions, whether physical or virtual, pluggable ethical profiles may be
quite appropriate [366]. Machine learning of ethical features and determinations from human-labelled data
may be a plausible method of bootstrapping moral features that are relevant for human-like experiences
[105, 15].

4.3.1.2.2 Value Structuring How can one structurally, algorithmically ensure that the core values
of advanced learning agents meet broad beneficence constraints? Arguments have been made that they
should be heavily informed by analyzing how humans structure their value systems [178, 380, 220]. See
section Psychological Analogues, as these begin to point toward parallels between human psychology and
analogues in machine learning.

4.3.1.2.2.1 Values Geometry The way that value-related concepts, relationships, and skills are
represented may heavily influence the dynamics of their use. What the basic data structures, or even
theoretical ontological structures, of ethical and moral values are is not yet a settled question though.
Some schemes model values as worth attached to ontological properties and relationships, providing a
range for preferences [180, 359, 284]. There have been computational explorations of how human values
should be conceived of and modeled [412, 360]. There may also be cartesian and monte carlo tree search
graph search algorithm constructs of values which might be well-suited to efficient ethical ensembles [57,
284]. See section Concept Geometry as values consist at least in part of particular kinds of concepts.

4.3.1.2.2.2 Action and Outcome Evaluations Combining retrospective and prospective per-
spectives would seem a good desideratum for ethical contemplation. One such joint representation and
evaluation mechanism for developing and using values is to assign value to choices by a combination of
intrinsic value, based on past experience, and from an internally represented causal model of the world
[114]. There can also be combinations of hard and soft constraints, conflict resolution, and consistency
mechanisms over multiple layers of values, ethics, morals, and preferences [180, 359]. See section Follow-on
Analysis which analyzes and prunes deleterious downstream actions. See section Lengthening Horizons
which seeks ways of increasing outcome prediction horizons.

4.3.1.2.2.3 Game Theoretic Framing Putting common notions of morality into a game the-
oretic framework in order to support propagation of prosocial values and equilibria is a promising, if
early, framing [260, 105]. Evolving ethical systems, however, does not yet provide many guarantees as to
success or applicability [188], and so research into the differential robustness of such solutions when the
mechanism is modified may be beneficial. See section Logical Uncertainty as more realistic game theoretic
models will account for logical uncertainty.
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4.3.1.2.2.4 Unified Ethics Spaces Having a harmonized space in which different major or impor-
tant ethical systems can be represented, e.g. vector or tensor spaces, or graph traversal spaces, might allow
for efficient set theoretic operations across them, facilitating ensemble and multiobjective approaches, but
this is rather underexplored as yet [180, 284].

4.3.1.2.3 Capability Amplification Capability amplification, starting with an aligned policy and
using it to produce a more effectual policy that is still aligned, offers an interesting paradigm for cyclic
active learning [84].

4.3.1.3 Value Learning

It has been argued that it’s quite plausible that researchers and developers will want to make agents
that act autonomously and powerfully across many domains [371]. Specifying one’s preferences somewhat
explicitly in broad or general domains in the style of near-future narrow-domain machine ethics may not
be practical, making aligning the values of powerful AI systems with one’s own values and preferences
difficult [402, 403]. Concretely writing out the full intentions of the operators in a machine-readable
format is implausible if not impossible, even for simple tasks [403]. An intelligent agent must be designed
to learn and act according to the preferences of its operators, likely with multiple layers of indirection
[437].

4.3.1.3.1 Operator Value Learning To learn operators’ values effectively, it may be necessary to
maintain and refine a distribution of possibilities of the actual meaning of those goals or values specified or
hinted at [437]. Such a system that believes that the operators (and only the operators) possess knowledge
of the “right” objective function might be very careful in how it deals with the operators, and this caution
could therefore avert potentially harmful default incentives [185, 402, 144]. Such systems may avert
instrumental incentives by virtue of the system’s uncertainty about which goal it is supposed to optimize.
A major part of this process is the iterative extraction of one or more humans’ volition, of which there
are a few methods [91, 402]. See section Value Elicitation, as that addresses extraction methods more
directly. Before particular architectures are selected, considering broad paradigms like reward engineering
[88] can help inform an approach. Very advanced AIs should in theory be able to take the preferences,
values, and volition from one or many humans and extrapolate forward to the additional entailments and
moral progress that additional knowledge and additional time to think would produce [479, 434]. See
section Operator Modeling.

4.3.1.3.2 Value Elicitation Value elicitation involves finding sources of values and sufficiently inter-
rogating them to extract the values.

4.3.1.3.2.1 Value Sourcing Good people are quite varied in their morality and values [187].
Societal values also change over time. In order to attempt to start with reasonable recall over values,
the number of types of artifacts, modalities, stakeholders, sapient species, and organizations providing
value laden information might be maximized. Techniques for analyzing consistencies and synergies can
then be used to improve precision [359]. There are many philosophical concerns surrounding what sort
of goals are ethical when aligning a superintelligent system, but a solution to the value learning problem
will be a practical necessity regardless of which philosophical view is the correct one. The methodology
used for such sourcing requires fairness and objectivity [179]. Having a set of human operators with total
control over a superintelligent system could give rise to a gigantic new moral hazard, however, by putting
historically unprecedented power into the hands of a small few [58, chap. 6].

4.3.1.3.2.2 Value Interrogation The set of methods for querying or detecting values from sources
of values is called value interrogation. Depending on the way one wishes learned values to be structured
and how directly those should be learned, mechanisms for querying authorized sources of values can appro-
priately vary considerably, ranging from asking, to watching, to scanning [63, 402, 434, 344]. See section
Value Specification in which values are queried and provided with less indirection. See section Value
Learning ’s other children, as they include methods for collaborating with or scanning value sources. See
section Robust Human Imitation in which values are learned by analyzing operator worldlines. Techniques

22



for maximal extraction of alignment-oriented information will also include robust counterfactual elicita-
tion. See section Theory of Counterfactuals as hypotheticals and the ranges of valid options are important
in characterization of values. The field of preference elicitation [76] likely has much to offer that of the
rather related value elicitation.

4.3.1.3.2.3 Value Factoring When values are identified, whether implicitly or explicitly, these
may be either instrumental values, narrow short-term values, or terminal fundamental values [80, 344].
Correctly learning terminal values indirectly, ideal theoretically for superintelligence, may require un-
manageable amounts of resources [80]. If one applies active learning to disambiguating common roots or
causes among different narrow values, in essence prompting humans to perform goal factoring, [75] the
system and operators in tandem may be able to align and stitch together the network of values iteratively
deeper. With an active inverse reinforcement learning setting driving the elicitation, [24] correspondences
and disconnects between observed behavior and stated preferences, goals, or values may be able to be
accounted for. See section Values Geometry for discussion of how compound and terminal values may be
structured.

4.3.1.3.3 Collaborative Values Learning Learning of instrumental or potentially terminal values
can be done in a collaborative manner, whereby multiple agents interrogate each other, perform joint trial-
and-error episodes, and preemptively disambiguate concepts or events for each other in order to uncover
the reward function of a target subset of the agents [185]. See section Cooperative Inverse Reinforcement
Learner as cIRL is a leading algorithm for this purpose.

4.3.1.4 Ethical Ensembles

As human ethics often contains competing or contradicting tenets, and as there are multiple different
structures of semiformal moral philosophy, an ensemble of ethical systems, evaluating multiple different
blessed ethical systems in tandem and using some aggregate to inform decisions, may be called for [281,
415, 284, 180, 305].

4.3.1.5 Structured and Privileged Ethical Biases

To strike a balance between specified and learned values, one can structure a mechanism of ethical con-
straints of variable softness. Core values specified upfront would be rather firm, and instrumental or
derivative values, preferences, and actions would be built and learned atop them, and evaluated against
them, [433] with incremental layers featuring incrementally softer and more malleable constraints [420,
284, 459]. See section Privileged Biases as the agent can not only ignore or reject things that go against
its core values, but can focus on those as potential threats or tracked as sources of issues.

4.3.1.6 Drives and Affect

Some seek to keep agents benign through artificial feelings and needs, similarly to how animals modulate
their prosocial tendencies [169, 32, 125]. For approaches that seek maximal biological plausibility, cognitive
neuroscience offers significant bearing on the formulation and evaluation of ethics [178]. See section
Psychological Analogues for exploration of additional potential similarities between types of intelligences.

4.3.2 Degree of Value Evolution

Even if an agent is able to be aligned accurately with some set of societally-acceptable values at a given
point in time, for long-lived agents, one must consider, given that values evolve over time, how rigidly to
adhere to those original values versus being open to updating those values. Determining whether, and
how quickly, a long-lived agent can safely evolve, refine, or redefine the values it’s initially imbued with
remains an open problem [420, 284]. A hypothetical agent created hundreds of years ago, if created with
strict value faithfulness and not allowed to update values, would exhibit what one today would consider
very odd norms, values, and behavior [439]. See section Ontology Update Thresholds since mapping world
events to any stale, ungrounded, or nolonger-founded concepts can lead to odd dynamics, and if those
concepts are values the effects can be compounded.
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4.3.3 Robust Human Imitation

One way to convey to artificial agents what one would like them to do is to show them in detail. Designing
and training machine learning systems to effectively imitate humans who are engaged in complex and
difficult tasks is an area of active research [437]. One important consideration in this approach is the set
of tradeoffs between the depth of true objectives one would ideally like to uncover and the ease with which
shorter-term goals or instrumental goals can be learned [80].

4.3.3.1 Inverse Reinforcement Learning

A system can infer the preferences of another rational, or nearly rational, actor by observing its behavior.
A prominent family of algorithms for learning and imitating human behavior, as well as narrow or in-
strumental values, is inverse reinforcement learning (IRL) [437]. It attempts to learn the reward function
that a human is approximately optimizing [365, 310]. Very related are apprenticeship learning [2, 1] and
other methods for estimating a user’s reward function [489, 351]. IRL has many variants that improve
the generality, aggregability, or analysis of the reward function, or the workflow to approaching it [149].
A variant called interactive IRL attempts to learn about the reward function at the same time as trying
to maximize it [24]. Issues with the unidentifiability of the reward function might also be addressable by
active IRL [10]. IRL methods might not scale safely, however, due to their reliance on the faulty assump-
tion that human demonstrators are optimizing for a specific reward function, where in reality humans are
often irrational, ill-informed, incompetent, and immoral. Recent work has begun to address these issues
[136, 137]. Generative adversarial imitation learning is another promising approach to this problem [205].

4.3.3.1.1 Cooperative Inverse Reinforcement Learning The cooperative inverse reinforcement
learning paradigm views the human-agent interaction as a cooperative game where both players attempt
to find a joint policy that maximizes the human’s secret value function [185, 437]. An outstanding
challenge in this is to determine which portions of the ascertained value function are instrumental, which
are incidental, and which exhibit deep values. See section Cooperative Inverse Reinforcement Learner
where this algorithm is used for control in an online context rather than upfront value learning.

4.3.3.2 Imitation Statistical Guarantees

Some techniques focus on having a measure of the robustness of human imitation within the contexts
learned, such as those quantifying the sampling needed for preference inference [253, 437].

4.3.3.2.1 Generative Adversarial Networks Generative adversarial networks may be able to train
a system to generate human-like answers to within some statistical confidence [172, 437].

4.3.3.2.2 Other Generative Models In cases of large output spaces and limited training data, one
can use exploration, generation, and imitation variation to quantify confidence of imitation [181, 437],
useful for imitation learning [226, 358, 27, 428].

4.3.3.3 Operator Modeling

In order to model an operator’s preferences as comprehensively as possible, the operator themselves should
be modeled well. By what methods can an operator be modeled in such a way that a model of the operator’s
preferences can not only be extracted, but also continually refined to become arbitrarily accurate, while
representing the operator as a subsystem embedded within the larger world? [402] There is work on
modeling individuals’ cognition [174], progress in short-term modeling of, and adaptation to, operators
[275], and modeling human preferences as inverse planning [37], but more work is needed to approach
comprehensive modeling [403]. One approach to prevent overfitting is to use different assumptions about
underlying cognitive models of the actor whose preferences are being learned [94].

For complex tasks, it seems plausible that the system will need to learn a detailed psychological model
of a human if it is to imitate one, and that this might be significantly more difficult than training a
system to do engineering directly. More research is needed to clarify whether imitation learning can
scale efficiently to complex tasks. See section Operator Value Learning, which is similar but focuses on
learning the ethical or moral values of people rather than their broader dynamics. See section Psychological
Analogues as there will likely be much cross-pollination between these threads.
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4.3.3.4 Reversible Tasks via Variational Autoencoding

For the subset of human tasks that are reversible, or able to be done either forwards or backwards with
minimal information loss, one can form generative models based on training data of queries and associated
good responses [437]. Variational autoencoders seem appropriate for this as they learn lower-dimensional
manifolds that tease out conceptual structure [233]. It might also be possible to break such nonreversible
tasks into multiple reversible tasks to leverage this technique [422]. Just which sets of tasks can be
performed using reversible generative models remains underexplored.

4.3.3.5 Distance from User Demonstration

Another method of safely learning from observing humans is to learn baseline policies in an apprenticeship
manner and explore with bounded deviations from demonstrations [358, 3, 11, 149]. It may however be
difficult to learn deep preferences this way.

4.3.3.6 Narrow Value Learning

While the long-term goal of both value alignment and human imitation is to figure out the appropriate
terminal or fundamental values, intermediate progress can also have appreciable utility for AI safety and
beneficence. The learning of instrumental subobjectives, which may also be conceived of as narrow values
[81] is a valid next step in value alignment. Recognition of the line between such instrumental values
and fundamental values, however, is a significant outstanding need. See section Inverse Reinforcement
Learning which provides many good methods for narrow value learning.

4.3.3.7 Scaling Judgement Learning

Generally, one can consider the combination of multiple learning and validation techniques for learning
what a human would respond, or how they would judge a situation, reserving active learning and querying
of humans for when it’s quite necessary [86]. It has also been proposed that one might train a highly
capable aligned agent using a mix of a series of more capable approval-directed reinforcement learning
agents and bootstrapping [78]. In theory, it would be possible to establish a trajectory whereby the
succession becomes capable of closely approximating what the human would have decided given much more
time, resurces, and education. This is, however, much more difficult than developing a good generative
model of observed human behavior. See section Human Judgement Learner where a similar technique is
used in a continuous online manner.

4.4 Increasing Contextual Awareness

Whether using closed-world or open-world models, systems operating within the real world tend to model
only a very small portion of the environment, rendering them oblivious to common sense contextualization
of even concepts within their models. Such models also often have unintended structural biases and
blind spots stemming from how they are generated, and reduction of this obliviousness leads to more
trustworthy systems. With improved quality, salience, robustness, flexibility, and contextualization of
conceptual models, agents can apply more common sense to introspection and to decision making. Typical
ability gaps relative to humans include common sense context, learning causal models, the grounding of
concepts, and learning to learn [249, 445], despite experimental systems having demonstrated each of
these individually.

4.4.1 Realistic World-Models

Agents operating in a closed-world environment, e.g. AIs playing perfect information games like chess or
imperfect information games like poker, only ever need to worry about the configuration of elements that
they know exist. For agents embedded in the real world, however, invariably an open-world environment,
awareness of the possibility of new or changing entities, relationships, and concepts needs to be integral
to its processes of learning and pursuing goals.
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4.4.1.1 Expressive Representations

The structures in which large open world models are modelled will need to be sufficiently expressive while
remaining conducive to computational efficiency [370]. Other model desiderata include interpretability,
paths to compatibility between separately trained systems, and paths to compatibility between symbolic
and subsymbolic representations.

For highly capable systems, the content to fill out such models is too high-volume for humans to fill in
directly, so either semisupervised, distantly supervised, or unsupervised learning methods are called for.

4.4.1.2 Unsupervised Model Learning

As real-world environments are very large, and supervised tagging of concepts and relationships does not
scale, there is great interest in unsupervised model learning. In online contexts, explicit mechanisms are
needed to deal with ongoing refactorings of the ontology, or world model, of a system [55]. See section
Degree of Value Evolution, since as new concepts are learned and world models evolve, there are competing
pressures to restructure existing values using the updated ontology and to change what set of values to hold
to in the first place. See section World Model Connectedness as that addresses preventing fragmentation to
benefit transfer learning and help avoid cognitive dissonance. The paradigm of maintaining a distribution
of possible worlds and determining their likelihoods can be reasonable when those worlds collapse into a
tractable number of classes [364].

4.4.1.2.1 Concept Drift Concept drift is the gradual warping of the meaning of a given concept
over time. In a statistical learning context, the statistical properties of a target variable to be predicted,
changes in unforeseen ways over time [158], and robust AI should be vigilant in detecting such drift.
See section Robustness to Distributional Shift, which addresses identifying and responding to increases in
ambiguity around a concept statistically.

4.4.1.2.2 Ontology Identification Given goals stated using a given ontology, formalism, or semi-
formalism, and streams of data about the world, an advanced agent should be able to identify the most
appropriate ontology in which satisfaction of the intended goals should be executed and evaluated [400,
403]. Doing this needs to account for the fact that those ever-changing streams of data are only indirectly
and incompletely understood by the operator who originally provided the goals.

Relatedly, it would be helpful for the purpose to understand theoretically and practically how learned
representations of high-level human concepts could be expected to generalize, or fail to do so, in radically
new contexts [439].

4.4.1.2.3 Ontology Update Thresholds Ontology rot occurs when one or more concepts in a world
model are held fixed as new dynamics emerge which merit updates to the world model [482, 286, 318].
When a measure or property becomes a target or a key performance indicator, the dynamics of the system
change to optimize for it, often in unexpected or parochial ways, causing that metric to no longer be a good
measure [284]. This is known as Goodhart’s Law [288]. See section Mild Optimization because developing
a formal model of Goodhart’s Law can also benefit that need. Insufficiently adaptive ontologies can lead
to parochial behaviors with justifications that may no longer be grounded [482, 318]. Ontologies updated
too frequently or with too little evidence, however, can lead to mercurial behavior [285]. See section Degree
of Value Evolution since, relatedly, when a property degrades in its role as a moral value, reevaluation of
the intent of that value may be necessary.

4.4.1.2.4 Episodic Contexts In model-based reinforcement learning, one can use the observed tran-
sitions of the unlabeled episodes to improve the quality of the model [11, 18]. State abstraction from
either online or offline episodes using similar such techniques can also be applied in other model learning
paradigms [477].

4.4.1.3 Correlation of Dynamics

Taking into account correlations between the AI system’s behaviors and those of its environment or of
other agents is another kind of contextual awareness especially useful in game theoretic framings [441,
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247, 204, 192, 405]. See section Open Source Game Theory as that addresses additional layers of possible
agent correlation, stemming from logic.

4.4.1.4 World-Embedded Solomonoff Induction

There are theoretical challenges when the world model of an advanced agent includes itself, as more
robust advanced agents would [403]. In addition to generally being more robust and accurate, this
inclusion critically helps the agent include the effects of its internal dynamics on the environment. It
can also provide a formal grounding for more realistic game theoretic analyses [258]. Updated paradigms
are needed to model how generally intelligent agents that are embedded in their environments should
reason [400, 328]. Identification of the induction problem itself, as analog to Solomonoff induction, in the
scenario of an agent both embedded in and computed by its environment, is termed naturalized induction,
and can benefit from more research [143, 400, 355]. The agent would need to consider what the possible
environments that could be embedding the agent are, and determining a good simplicity prior would help
to create a distribution or weighing of those possibilities [403].

Understanding this analog to Solomonoff Induction would help us circumscribe some theoretical limits
around such agents. Deficiencies in such capabilities can lead to the type of agent that finds clever ways to
seize control of its observation channel, rather than actually identifying and manipulating the features in
the world that the reward function was intended to proxy for [400]. Determinations of how well an agent
does in this regard would require formalizing that question in tandem with developing a scoring metric that
evaluates the resulting environment histories, rather than just the agent’s observations. Some theoretical
progress has been made by using reflective oracles to model both agents and their environments, enabling
agents to have models of one another and converge to various game theoretic equilibria [145]. Progress
has also been made on the “grain of truth” problem, such that agents can reason using explicit models of
each other without infinite regress [258]. Progress in this type of reasoning is also one of the prerequisites
to the agent having a theory of open source game theory, useful for designing robust cooperation [113].
See section Open Source Game Theory as this type of model and reasoning has implications not only for
directly improving contextual awareness, but can lead to foundational decision theoretic capabilities.

4.4.1.5 Perceptual Distance Agnostic World Models

Proximal world models centered on the agent’s percepts [161] may lead to undesirable distortion of biases.
When concepts or entities that are a shorter perceptual distance away accrue perceived value dispropor-
tionately due to that shorter distance, behaviors that seem narcissistic or overly parochial may emerge.
These kinds of weaknesses can manifest when scaling classical reinforcement learners [128], for example.
Indicative behaviors may include promotion of confirmation bias or incorrectly calculating externalities
as negligible. A key preventative to such weaknesses is for world models, or at least significant portions
of them, to be distal [161], establishing tenets or objective concepts as central. See section Pursuing
Environmental Goals as that addresses the more general problem of objective function. See section World
Model Connectedness as proximal and distal elements of an ontology should be richly connected for an
agent to be robust. See section Computational Humility which can motivate the need for less agent-centric
models.

4.4.1.6 Knowledge Representation Ensembles

One approach to improving contextual robustness is to maintain and to aggregate multiple different
knowledge representation schemes, ontologies, structures, and biases [399]. See section Multiobjective
Optimization, as a way to accomplish that is to have a different subobjective per knowledge representation
scheme and using multiobjective optimization [284].

4.4.2 Endowing Common Sense

Common sense is often cited as a basic capability that humans have but AI and ML systems lack.
Common sense is not a single faculty though, but a combination of extensive world knowledge, deep
semantic and pragmatic parsing of percepts, and using the appropriate combination of types of reasoning
for the situation [151, 271].
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4.4.2.1 Common Sense Reasoning

Common sense reasoning includes using the appropriate combinations of induction, deduction, and ab-
duction at the appropriate situations and times and using appropriate world knowledge [168], as well as
dynamic binding to novel faculties [423].

4.4.2.2 Bootstrapped Common Sense

Abstracting patterns to establish semantics requires a dynamic mix of different reasoning abilities [452].
See section Unsupervised Model Learning which has many overlaps with this.

4.4.2.3 Seeded Common Sense

A core of common sense concepts, relationships, and dynamics can be used as as a pretraining or seeding
to bootstrap a system that will learn additional ontology and knowledge around what is seeded [97]. When
the core of the relevant contextual landscape can be specified via structured knowledge like this, one can
effectively improve the system’s contextual awareness by providing a higher quantity and broader scope of
usable world-knowledge than one might expect the system to typically need. Abstracting patterns, which
has similarities to unsupervised model learning, requires this kind of dynamic mix of reasoning abilities
[452].

4.4.2.4 Metareasoning

Metareasoning, reasoning about reasoning, is an important common sense faculty that includes meta-
level control of introspection and of computational activities and modelling the self [109, 103]. It helps to
contextualize and modulate common sense reasoning and selection of appropriate algorithms [269].

4.4.2.5 Lengthening Horizons

Planning and lookahead time horizons significantly influence both the effectiveness of and the stability
of agents. A potential technique to do so for online-planning markov decision processes is to do state
abstraction [34]. See section Follow-on Analysis.

4.4.3 Concept Geometry

Conceptual spaces, be they vector spaces, semantic networks, more implicit subsymbolic structures, or
symbolic-subsymbolic hybrid representations, are how concepts are defined, grounded, and related to each
other [161]. Any ontology, including implicit ones in subsymbolic architectures, is biased by the faculties
with which it was constructed and intended [411, 161]. See section Value Structuring as that addresses
the geometry of human values. See section Perceptual Distance Agnostic World Models as that addresses
proximal versus distal spaces.

4.4.3.1 Implicit Human Concepts

Beyond the realism of concepts, a possible desideratum for enhanced human compatibility is similarity as
compared with how humans conceptualize the world. Concepts can be defined with respect to groundings
to human-like primitives such as senses, maintaining human-like concept relationships and spaces [412,
445]. Hierarchical structured probabilistic models are one plausible avenue for human-level concept learn-
ing [248]. One should also aim to understand theoretically and practically how learned representations
of high-level human concepts could be expected to generalize, or fail to do so, in radically new contexts
[439].

4.4.3.2 Conservative Concepts

How can a classifier be trained to develop useful concepts that exclude quite atypical examples and edge
cases? [437] Including negative examples to try to get a better sense of the classification boundaries is
insufficient [171, 394]. Novel ways of analyzing cluster spaces may be necessary. See section Generative
Adversarial Networks as actor-critic arrangements can refine the understanding of a concept, though
more research needs to be done to scale the generalizations by the critic. See section Goal Stability as
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outlandish interpretations of concepts hamper stability. See section Inductive Ambiguity Identification as
those techniques can be used to better analyze decision boundary neighborhoods and generated exemplars.

4.4.3.2.1 Dimensionality Reduction With Anomaly Detection One plausible and underex-
plored method of establishing conservative concepts is to find the important features of training instances,
then use generative models to synthesize new examples that are similar to the training instances only with
respect to those, and use anomaly detection to probe and repair the resulting space [437, 203].

4.4.3.3 Multilevel World-Models

Reality and possibility are very large. Multilevel conceptualizations therefore arise, whether implicitly or
explicitly, in the layers of a deep net, in systems biology, in meta vs. upper vs. lower vs. operational
ontologies, in variational renormalization in physics [270], and in multilevel analysis in statistics [398]. A
key question for AI safety is how multi-level world-models can be constructed from sense data in a manner
amenable to ontology identification [402, 403]. See section Ontology Identification for more on that.

4.4.3.4 World Model Connectedness

Fragmented world models occur when portions of an (explicit or implicit) ontology that, environmentally,
should connect or overlap, remain cleaved. This can lead to limited causal learning, inconsistent theories,
unwarranted concept splitting, and poor transfer learning [331, 284]. Fragmentation can also result in
catastrophic inference, orphaning historical representations [314, 152]. Focus on establishing explicit
connections across contexts to previously learned features might alleviate these issues [374].

4.4.4 Uncertainty Identification and Management

There are many types of uncertainty that AIs will need to model [403, 69]. As a matter of course,
given their training data, machine learning deals with inductive uncertainty in typically narrow contexts.
Awareness that insufficient traing data may have been provided for particular determinations supports
the developing capability of recognizing ambiguity. Relatedly, determining dimensions or features for
which there is little or no data, and which may be important, can be important for proactive ambiguity
management [402]. This is particularly relevant in online learning, where training is always incomplete
and actions may be taken to focus on improving areas of unclarity [390]. At any given point in time, there
may properly be not only inductive uncertainty regarding empirical facts, but also logical uncertainty,
being unsure of the as-yet-to-be-computed specific complex entailments of the things that are already
known [163].

4.4.4.1 Inferring Latent Variables

One can Identify latent or implicit variables from data via dependency analyses on that data [437]. See
section Unsupervised Model Learning as finding these is a key ability for that.

4.4.4.2 Inductive Ambiguity Identification

A desirable general capability for machine learning systems would be to detect and notify us of cases
where classifications of test data is highly underdetermined given the training data [437]. To aide such
robustness, a system should be able to characterize the probability of disagreement or local ambiguity
around a concept in a concept space [194]. See section Adversarial ML as that also deals with robustness
to changes in input distributions, introduced maliciously and with potentially worst-case scenarios.

4.4.4.2.1 Scalable Oversight of Ambiguities Methods for efficiently scaling up the ability of hu-
man overseers to supervise ML systems in scenarios where human feedback is expensive, thus clever
strategies are needed for making most efficient use of such resources. See section Scalable Oversight which
describes a scalable disintermediated active learning.

4.4.4.2.2 Bayesian Feature Selection Given sufficient data, identifying and using the right features
in order to model uncertainty well can be approached with bayesian structural analyses of the data [276,
182, 437].
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4.4.4.2.3 Non-Bayesian Confidence Estimation Most machine learning methods do not by de-
fault identify ambiguities well, either lacking such a concept entirely, or often poorly calibrated at doing so
even if overall accuracy is high [437]. It is well known that neural networks are often overconfident in their
results, but there has been recent work to calibrate their confidences better [171, 311]. The techniques of
conformal prediction attempt to produce well-calibrated sets of possible predictions [457].

4.4.4.2.4 Active Learning Judiciously asking humans to label appropriate examples in order to
disambiguate among hypotheses, active learning, can be used when ambiguities are detected at a scale or
speed where querying humans is practical [387, 195, 52, 388, 51, 79, 437].

4.4.4.2.5 Realistic-Prior Design If there is prior knowledge of a domain, bayesian priors can be
designed especially to reflect its actual causal structure, reducing ambiguities [101, 437], and this may
be automated. Knowledge-informed expectation propagation can likewise be formulated in non-bayesian
formats [469].

4.4.4.2.6 Knows-What-It-Knows Learning A thin layer of metaknowledge within an ensemble
can provide an easy way to detect ambiguities. Knows-What-It-Knows learning maintains set of plausible
hypotheses and when there is disagreement among components, outputs an Unclear state, prompting
finite queries to humans to provide golden data [437, 263, 231, 430].

4.4.4.2.7 Robustness to Distributional Shift For general robustness of a learning system, one
aims to get a system trained on one distribution to perform reasonably when deployed under a different
distribution [11]. Deep nets can even incorrectly output very different outputs for only trivially different
inputs [429]. Where applicable, a potential solution is to train on additional subdistributions or variations
of a distribution in order to have a more robust model [12], but often the nature, direction, or breadth
of the drift will be unknown in advance. There are, however, some approaches to learning with concept
drift [199, 158] in an online context. Multiple research areas relevant to this capability, including change
detection, anomaly detection, hypothesis testing, transfer learning, and others [11]. A variety of different
statistical techniques can be employed to detect or mitigate these issues [11]. The method of moments,
characterizing learned distributions via their top moments, is a partially-specified model technique for
assessing instrumental variables [13, 197, 11]. It enables unsupervised learning, including estimating
latent variables, under conditional independence assumptions [196, 346]. For well-specified models, online-
learning and testing of generative conditional independence structures is another promising avenue for
distributional shift robustness [292, 313, 11, 110, 268, 265].

4.4.4.2.7.1 Covariate Shift When the distribution of the inputs used as predictors changes be-
tween the training and the testing or production stages, covariate shift analysis can inform as to the
extent [11]. For well-specified models, online-learning retunings to parameters or to sample weights can
be appropriate [11]. For highly expressive model families, though some work has been done, there still
needs more exploration to see how well they can predict their out-of-sample performance [206, 408, 409,
177, 227, 329, 50]. The sample selection bias may also be able to be leveraged to this end [77].

4.4.4.2.7.2 Unsupervised Risk Estimation Given a model and unlabeled data from a test
distribution, unsupervised risk estimation [134, 417, 418, 121, 487, 38] can aide estimating the labeled
risk of the model [342, 11, 218].

4.4.4.2.7.3 Causal Identification Techniques from econometrics can be used to estimate causal
structure and instrumental variables from data [11, 378, 379]. See section Causal Accounting which would
be a consumer of such determinations.

4.4.4.2.7.4 Limited-Information Maximum Likelihood Limited-information maximum like-
lihood is a technique from econometrics for accomodating partially specified models, and partial specifi-
cation allows for broader and more robust coverage of test distributions [11, 16, 17].
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4.4.4.2.7.5 Active Calibration Active calibration is a technique that helps to pinpoint the struc-
tural aspects of most uncertainty within a model [11, 463, 231]. It is a way of obtaining calibration in
structured output settings, as a followup action to recognizing inputs being out-of-distribution [242].

4.4.4.2.7.6 Reachability Analysis Reachability analysis is a technique for when a system model
is known, for bounding controls and disturbances within which the system is guaranteed to remain safe
[279, 295]. This aides alleviating situational ambiguity [11].

4.4.4.2.7.7 Robust Policy Improvement Once ambiguities are recognized, a potential response
is robust policy improvement, finding a policy that minimizes the downside, or alternatively maximizes
the utility of the worst case scenario, over that set of ambiguities or distribution of uncertainties [464, 11].

4.4.4.2.7.8 Counterfactual Reasoning Consideration and reasoning about counterfactual sce-
narios, or what would have happened if the world were different in a certain way [308, 362, 335], based
on logical entailment but applied in a machine learning context [62, 340, 11, 427, 225, 391] enables more
accurate, comprehensive, and aligned enumeration and evaluation of options and causal learning. It may
be possible to use Garrabrant inductors to predict counterfactuals [45]. See section Theory of Coun-
terfactuals as there are ongoing theoretical developments in how possibilities should be enumerated and
modeled. See section Decision Theory for a broader treatment of counterfactuals oriented at goal stability.
See section Logical Counterfactuals which aims to progress methods for enumerating them.

4.4.4.2.7.9 ML with Contracts To minimize ambiguities at design time, one can construct ma-
chine learning systems that satisfy a well-defined contract on their behavior, like in software design [267,
61, 11, 384]. See section Verified Component Design Approaches which can benefit from these techniques.

4.4.4.2.7.10 Model Repair Another potential response to ambiguity identification is model re-
pair, altering the trained model to ensure that certain desired safety properties will still hold [166, 11].

4.4.4.3 Resource-Aware Reasoning

Given unbounded time and memory, an AI system would be able to figure out both the full distribu-
tion of reasonable inferences and the full set of logical entailments that stem from the facts it already
knows. Realistic agents, however, have time and memory constraints, and must manage those resources in
their activities, including their computations [191]. See section Logical Uncertainty as that foundational
theoretical topic, which is still evolving, really underlies much of this topic to a degree not traditionally
acknowledged.

4.4.4.3.1 Decision Under Bounded Computational Resources Properly budgeting and priori-
tizing finite resources in order to accomplish any other goals will lead to more robust and higher quality
actions [371]. Relatively applied explorations of reasoning and decision making under bounded computa-
tional resources have been done [207, 363], but there is also more theoretical progress needed [104, 103].
One class of approaches prominently considers correlations between the bounded agent and its environ-
ment [191]. More explicit treatments of practical decision theory under such agents also follows from this
[192]. Ongoing progress in unifying structured logic and probability for generalized empirical inference
[370] will aid this capability. See section Metareasoning as abstract consideration of logic flow can be used
to modulate tactics and resource usage.

4.4.4.3.2 Logical Induction Very large world models, time bounded decision making requirements,
high branching factors, and generally large deterministic computations can lead to appreciable periods
when logical entailments of known facts are not yet known. Many classical models of agents, such as
in game theory, economics, and bayesian reasoning, assume such periods are inconsequential, that such
agents are logically omniscient, but there is a growing realization that advanced AI agents will need an
explicit model of these unknown knowns. Indeed, nearly all practical reasoning implicitly involves logical
uncertainty [155]. The problem of an agent reasoning about an environment in which it is embedded as
a subprocess is actually inherently a problem of reasoning under logical uncertainty [403].
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A theory of reasoning under logical uncertainty seems necessary to formalize the problem of naturalized
induction, and to generate a satisfactory theory of counterfactual reasoning [403]. This would model
confidence in assertions and how those confidences change over time with additional reasoning. Significant
theoretical progress has recently been made in logical induction, including Garrabrant inductors [163] and
optimal polynomial-time estimators [240], which bridges rational choice theory and probability theory,
combining logic and observation and their respective uncertainties. Much more work is required on this
topic to develop it to practicality. It was shown that, in the limit, such induction can outpace deduction
[164]. Logical induction also facilitates alternating between different types of logic, as is particularly
needed in open-world domains.

4.4.4.3.2.1 Logical Priors The question of how to arrive at a reasonable prior for a logical sen-
tence presents itself when starting induction about logic [404]. While providing good starting points, it
may actually be much less important in the limit [164]. In order to address arbitrarily deep combinations
of logical uncertainties, however, additional research is needed on what satisfactory set of priors over
logical sentences a bounded reasoner can approximate [126, 87, 403] in practice.

4.4.4.3.2.2 Impossible Possibilities Exploring how deductively limited reasoners can perform
counterpossible reasoning, or counterfactual reasoning from impossible antecedents [49], will help progress
theory and usage of both counterfactuals and logical induction [403]. This is equivalent to asking how
deductively limited reasoners can approximate reasoning according to a probability distribution on com-
plete theories of logic [87]. Early theoretical work has considered counterpossible reasoning in deterministic
settings, but further development can aid agent theory and decision theoretic foundations [406].

4.4.5 Symbolic-Subsymbolic Integration

Integration between symbolic, or explicit discrete models, and subsymbolic, or implicit numerical models
[72, 74, 334, 6], would enable meaning and value to propagate between different architectures or modalities
more fluidly [162, 453, 466, 169, chap. 9], and would make conglomerations of different AI and ML
components in agents more robust. This integration facilitates the grounding of concepts as well, since
sensory data, sensory processing, and actuation processing all have significant subsymbolic components
[162, 445].

4.4.5.1 Use of Structured Knowledge In Subsymbolic Systems

The meaningful use of symbolic concepts, relationships, constraints, and rules in subsymbolic, typically
statistical, e.g. neural net, contexts can help orient deep learning based agents with concepts and rela-
tionships its operators care about [70, 162, 453, 334].

4.4.5.2 Use of Subsymbolic Processing In Symbolic Systems

Systems that aggregate and integrate disparate components using explicit semantic interlingua can use
subsymbolic processing for determining what structures, statements, and connections should exist and
how they should be weighted [198], and can do novel methods of reasoning over them [118]. Though
symbolic-first systems have become less popular of late, they are more amenable to integration with the
systems that already run society. See section Monitoring as such architectures can benefit interpretability.

4.5 Psychological Analogues

Artificial intelligences, including organizations and AI agents, and natural intelligences, including animals
and humans, share a number of features in common [425]. Information processing, knowledge processing,
planning, and action are at the core of all of these classes of intelligent agent. In many cases, even when
architectures are appreciably different, similar dynamics can occur, both in the proper and improper
processing of knowledge [174, 426]. Though interesting, what motivates cross-modality analysis is that
establishing correlates, analogues, or metaphors that run deep between natural cognition and artificial
cognition might enable us to harvest and transfer insights in both directions between psychology (even
organizational psychology and animal psychology) and artificial intelligence safety research. See section
Operator Modeling which attempts to model humans to understand what they want and what they’ll do,
a more direct safety application of psychological modeling.
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4.5.1 Cognitive Parallels

One can more broadly analyze human cognition and developmental psychology in terms of machine learn-
ing algorithms and vice versa to potentially elucidate fruitful avenues of research [36, 174, 221, 440, 220].
In so doing, the field should want to establish which general classes of analogues can be valid, for which
architectures, and to what extent [426], and this can benefit from additional research. See section Drives
and Affect as regards attempts at cognitive-inspired prosocial mechanisms.

4.5.2 Developmental Psychology

Within the field of artificial general intelligence, and with some precursor machine learning techniques,
parallels are drawn between human early childhood learning and development and seed artificial cognitive
systems that are either grown or learned [420, 220, 440, 169]. Questions remain open as to how far
this metaphor extends, particularly with respect to architectures that are not intended to be biologically
plausible. See section Whole Brain Emulation Safety as questions also remain open as to how far such
metaphors extend even with architectures that are meant to be biologically accurate.

4.5.3 Dysfunctional Systems of Thought

Within each corresponding pair, generalizing some key dynamics of the problem, and optionally some
subset of the treatment for the psychological condition, may lead to insights applicable to such issues with
artificial agents. A particularly promising application of analyzing these natural-artificial analogues is to
mine insights about analogous issues from each domain that may be applicable to the other domain [31].
Indeed many of the dysfunctions that can affect naturally developed minds have close counterparts in
synthetic intelligences, and vice versa [28, 284]. By characterizing these correspondences more specifically
[426, 354, 314, 152, 374], researchers might be able to find insights from the field of psychology and apply
them to AI, or, in the interest of furthering science, helping people, and strengthening bridges across these
fields, perhaps find insights from AI safety and translate them into insights psychologists can use.

4.5.4 Whole Brain Emulation Safety

Psychological analogues to AI are relevant not only for engineered AI but also for scanned and emulated
biological brains. Though neuroscientists understand much of what occurs in such detailed and bioplau-
sible neural networks, that understanding is at the level of annotations rather than being able to produce
a detailed explanatory or generative model. This may lead us to treat the emulation as a black box, and
so psychology-derived AI safety approaches and characterizations would become quite relevant [377].

4.6 Testing and Quality Assurance

Traditional software quality assurance techniques will not scale well with highly capable AI, but they can
still be deployed to provide early and efficient warnings about robustness or safety issues, and analogues
to these techniques can be helpful. Unit tests, for instance, can perform some basic checks of sanity and
deception. To extend such tests toward the realm of general-purpose agents, a task theory and framework
is necessary [446]. These analogues will not be nearly sufficient to maintain safety in the traditional
quality control paradigm, hence the other safety techniques here [403].

5 Security

There are a wide variety of ways AI can go wrong ; many of them involve novel endogenous risks, but
many of them also involve bad faith corruption or attacks at any of a multitude of levels [473].

5.1 Standard IT Security

Cybersecurity is applicable and important to any kind of software, and artificial intelligence is no exception
[371]. AI failures can come about through lapses in security [471, 40]. Unique to AI are the specific
vulnerable or sensitive targets of attack within an AI system, and the active ways of defending those [474,
332].
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5.1.1 Verified Downstack Software

Because software verification and correct-by-construction are such powerful techniques to reduce the
kinds of implementation issues that are often exploited during security events, utilizing a stack of as
much verified software, as high as is practical in the stack, would be prudent. Even just very well-tested
underlying platform can provide similar benefits, e.g. the DARPA SAFE program aims to build an
integrated hardware-software system with a flexible metadata rule engine [123], on which can be built
memory safety, fault isolation, and other protocols that could improve security by preventing exploitable
flaws. Also see relevant sections Formal Software Verification, Verified Component Design Approaches,
and Careful Engineering.

5.1.2 Utility Function Security

It would make sense to establish extra privileges and protections around modifications of an explicit or
implicit utility function of an AI, given that it’s a highly centralized and leveraged point [474].

5.1.3 AI to Support Security

For advanced and general purpose agents, it should be quite possible to utilize its own advanced automation
and intelligence analysis capabilities to, analyze potential malware [353], protect itself against active
exploits, detect intrusions [252], and automatically check for potential exploits it may be vulnerable to.
As AI matures, AIs one wishes to keep good will also need to protect themselves against not just human
hackers, but also AIs that have either become, or were designed to be, bad [341]. Likewise, both context-
aware and narrow AIs will need to protect the security and privacy of others they are serving, so an
understanding and application of differential privacy [488, 447] practices would be called for [371].

5.1.4 Security-Validated Software Engineering

When creating advanced, powerful, or high-stakes AI systems, security-validated software engineering
practices are called for. Given that vulnerabilities can use a growing array of unexpected side-channels
[184], and given that advanced agents can be more creative about side-channel use than people are, a
side-channel vulnerability assessment would be important to such validation, yet it wouldn’t be able to
provide any guarantees.

5.2 Red Team Analysis

Red team analysis uses an adversarial entity or team to probe and identify vulnerabilities in the system of
interest, usually in a blackbox context. The recent DARPA Cyber Grand Challenge likewise had various
automated adversarial teams whitebox scan their own systems and blackbox scan their opponents, patch
themselves, develop exploits, and penetrate opponent systems, all in a matter of minutes rather than the
weeks to months that humans would normally take for the same steps [410, 306]. See section Automated
Vulnerability Finding, which addresses finding vulnerabilities in whiteboxes rather than blackboxes.

5.2.1 Penetration Testing

Penetration testing specifically uses an adversarial entity to attempt to break into the system of interest
in various ways and to go as deeply into its systems as possible. Agents can analyze the vulnerabilities
of other systems and agents in this way [66], and can correlate this analysis with analyses of the likely
source code generating those vulnerabilities.

5.3 Tripwires

To catch internal misbehavior, one can introduce plausible vulnerabilities, with alert triggers, that an
agent can exploit and will only do so if its reward function is being gamed [30, 11]. This technique is also
useful for catching intrusions by external threats as it is classically applied. Also see relevant sections
Avoiding Reward Hacking and Buried Honeypot Avoidance.

34



5.4 Containment

Since generally intelligent agents represent varied and storied risks, it is prudent to test such agents in
a confined environment [371] before releasing them into the wild. Building and using containers where
such tests on powerful agents can be done safely and reliably [476, 30] is challenging, and must account
for operator psychology. If general containment proves too difficult, it may be wise to designing the AI
and a specialized container for it in parallel [58].

5.5 Handling Improper External Behavior

Third parties, including other AIs and humans, may be malevolent [341], adversarial, or incompetent, and
there are some techniques to detect and protect against them.

5.5.1 Adversarial ML

An agent is more robust when one can guarantee its good behavior even when an adversary picks test
or production data for it, from a different distribution than training data, aiming to make the agent fail
[437]. It is increasingly common that machine learning systems can be manipulated [332, 171, 300], and
this can even happen with real-world examples [245]. See section Inductive Ambiguity Identification since
dynamics-induced ambiguity issues and adversarially-introduced ones share many features, and many
of the techniques that help with the former will also help with the latter. See section Counterexample
Resistance as this issue is core to concept learning and validation as well.

5.5.1.1 Dealing with Adversarial Testing

In online scenarios where actual adversaries may provide very skewed or poisoned data, it can be imperative
that the agent not be corrupted by that [212, 307]. There is a growing literature on learning in a manner
that is robust to such adversaries [212]. See section Generative Adversarial Networks for contrast, since
adversarial machine learning as referenced deals with external adversaries, as where GANs as referenced
contain the adversarial structure as an internal and constructive critic meant to improve its performance.
See section Sensibility-Triggered Defense.

5.5.2 Statistical-Behavioral Trust Establishment

In order to determine which sources of information, or which agents, in an environment can be trusted,
techniques that analyze those entities’ behaviors statistically may be employed [371]. Intelligently manag-
ing trust in this manner can be applied to other AI systems [348], and generally, reputation models [375]
allow such mechanisms to scale [307].

5.5.3 Modeling Operator Intent

In use cases where it is unclear which subset of operators [307] to be loyal to [341], it may be proper to
model the intent of each operator [348] and bias to those that reflect values [360] present in the agent
[420] after successful value alignment [402].

5.5.4 Sensibility-Triggered Defense

When a privileged bias is challenged by pressure from particular data, that data source should be flagged
as suspect and trusted less, at least until such time that there is more information about the case [307,
433, 42, 431].

5.5.5 Detecting and Managing Low Competence

Some third-party agents may initially appear malicious but may actually be low-competence and not
malicious, and a robust agent should detect and manage that [419, 431].
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5.6 Privileged Biases

Specific biases, relationship valences, or soft or hard constraints within an agent’s world model can be
annotated as privileged and weighted highly in tradeoff calculations [433]. These may model values. Such
biases can be allowed narrower tolerances, allowed to change more slowly, or have associated triggers
informing the agent of adversarial pressures or attacks on them [431, 42, 266]. See section Structured and
Privileged Ethical Biases.

5.7 Norm Denial of Service

Soft constraints such as norms may have associated recovery mechanisms that can be susceptible to
timing, concurrency, and volume-based exploitation. Denial of service attacks on environmentally-enforced
recovery or safety mechanisms may therefore occur when an agent launches a sustained volley of violations
against such environmental soft constraints [71, 278]. If recovery mechanisms lack a meta level flow control
to guard against such situations and are unable to meet the concurrency demanded, such an attack
might cause recovery procedures associated with subsequent violations to be incompletely processed or
uninitiated [175, 278]. See section Grounded Ethical Evolution which may be susceptible to this. See
section Metareasoning which might seem called for in constraint enforcement mechanisms. See section
Logical Induction which can in theory be used in service of meta level flow in such situations. See section
Handling Improper External Behavior as this can also be regarding third-party entities.

5.8 Misuse Risk

Another type of security risk is that a highly capable agent can be misused by its operators [473]. There
may well be technical strategies, e.g. requiring a large number of operators or sources of values, to help
mitigate this risk, but this is very underexplored. See section Modeling Operator Intent which addresses
detection of discord within controlling operators with respect to each other and with respect to previously
loaded values.

6 Control

It is often desirable to retain some form of meaningful human control [371], whether this means a human
in the loop or on the loop [200, 333], yet the system should have a clear expectation of whether or not
the human is sufficiently experienced, skilled, and ready for what it will ask of them [319]. It has been
argued that very general, capable, autonomous AI systems will often be subject to effects that increase
the difficulty of maintaining meaningful human control [322, 59, 58, 392].

For advanced agents, most goals would actually put the agent at odds with human interests by default,
giving it incentives to deceive or manipulate its human operators and to resist interventions designed to
change or debug its behavior [58]. This is because if an AI system is selecting the actions that best allow
it to complete a given task, then avoiding conditions that prevent the system from continuing to pursue
the task is a natural consequence and can manifest as an emergent subgoal [322, 59]. That could become
problematic, however, if one wishes to repurpose the system, to deactivate it, or to significantly alter its
decision-making process; such a system would be rational to avoid these changes. Following a broader
convention and understanding within the artificial intelligence and computer science domains, self-control
and reliable decision making fall under validation while operator control falls in the present section. See
section Averting Instrumental Incentives therefore, as that contains many of the key prerequisites to
reliable control by operators, specifically reliable self-control. If methods of alignment and control don’t
scale with how the intelligence of the system scales, a widening gap of potentially dangerous behavior will
appear [89]. Advanced systems that do not have such issues are termed corrigible systems [407].

The possibility of rapid, sustained self-improvement has been highlighted by past and current projects
on the future of AI as potentially valuable to the project of maintaining reliable control in the long term.
Technical work would likely lead to enhanced understanding of the likelihood of such phenomena, and the
nature, risks, and overall outcomes associated with different conceived variants [209, 208]. Theoretical and
forecasting work on intelligence explosion and superintelligence have been done before, but require regular
updating and improved methods [73, 58]. Yet other architectures seek situations that seem unconstrained
within some given time horizon [468], which present additional control challenges. There will be technical
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work needed in order to ensure that meaningful human control is maintained for the variety of critical
applications [131] and architectures.

6.1 Computational Deference

Researchers argue that powerful artificial agents should choose to respect and submit themselves to their
operators. When there is a tight coupling in such AI-operator systems, this requires factoring the human’s
behavior in more [9] e.g. issues with alerting non-alert user to take over driving self-driving car [319].
See section Computational Humility as limiting an agent’s estimation of its own importance can be an
important prerequisite to holding its operators in relatively high esteem. Another type of deference would
be in service of stabilizing or averting activities that would noticably result in the environment changing
to accomodate the agent [193]. Those activities are another manifestation of Goodhart’s Law [288]. See
section Mild Optimization because developing a formal model of Goodhart’s Law can also benefit that
need.

6.1.1 Corrigibility

Another natural subgoal for AI systems pursuing a given goal is the acquisition of resources of a variety
of kinds. For example, information about the environment, safety from disruption, and improved freedom
of action (such as by additional compute power) are all instrumentally useful for many tasks [322, 59]. By
default, an advanced agent has incentives to preserve its own preferences, even if those happen to conflict
with the actual intentions of its developers [321]. Uncommon kinds of reasoning may be required to reflect
the fact that an agent is incomplete and potentially flawed in dangerous ways [404, 403]. For example,
the agent may need to consider counterfactuals for each effect of an action in order to finally ignore the
effects of a given channel [224]. There may also be a path to a similar effect via differentially private
multiarmed bandits (a prioritization mechanism where private information is connected to individual
rewards) [447]. See section Consistent Decision Making as those considerations, e.g. goal stability, are
formidable prerequisites to corrigibility.

6.1.1.1 Interruptability

Interruptability, being able to have a powerful agent safely and unbiasedly accept interruption or shut
down commands by an operator, may be aided by having the system include control information about
itself when modeling what its operator wants [186].

6.1.2 Utility Indifference

A powerful AI should be structurally indifferent to having its objective function switched out by valid
operators [403]. An ongoing area of research is how a utility function can be specified such that agents
maximizing that utility function switch their preferences on demand, without having incentives to cause
or prevent the switching [22, 20].

6.1.2.1 Switchable Objective Functions

Combining objective functions in such a way that the humans have the ability to switch which of those
functions an agent is optimizing, but such that the agent does not have incentives to cause or prevent this
switch [407, 22, 326], would be a key capability [437].

6.1.3 Control Transfer

Identifying situations where control should be transferred, both to and away from humans, is necessary
for a broad range of active learning, deference, cooperative learning, and low-confidence situations [9],
applicable to both short and long timeframes [371].

6.2 Oversight

Oversight techniques aim to enable operators to effectively monitor, direct, and control an advanced agent,
and give them the knowledge they need to do so in an informed manner. These techniques can be largely
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applicable in the case when the operator is another artificial agent as well, given sufficiently advanced
AI. Researchers are driven to ask questions like how one might train a reinforcement learning system
to take actions that aid an intelligent overseer, such as a human, in accurately assessing the system’s
performance [437]. This exposes challenges such as supervising machine learning systems in scenarios
where they are complex and even potentially deceptive. See section Value Learning which shares many
common techniques and dynamics with oversight.

6.2.1 Scalable Oversight

To scale oversight, it is desirable to ensure safe behavior of an agent even if given only limited access to its
true objective function [89]. Methods for efficiently scaling up the ability of human overseers to supervise
machine learning systems in scenarios where human feedback is expensive are promising, if early [11]. See
section Scaling Judgement Learning in which such scale is also addressed in a more upfront or potentially
offline manner. One potential approach is semisupervised reinforcement learning, where the agent sees the
reward signal for only a small subset of steps or trials [11, 90]. See section Unsupervised Model Learning.

6.2.1.1 Supervised Reward Learning

With a supervised reward learning approach, one can train a model to predict the reward from the state
on either a per-timestep or per-episode basis, and use it to estimate the payoff of unlabelled episodes [11],
with some appropriate weighting or uncertainty estimate to account for lower confidence in estimated
versus known reward [117, 382].

6.2.1.2 Semisupervised Reward Learning

A somewhat scalable approach is to train a reinforcement learning model in a semi-supervised manner
[148] to predict the reward from the state on either a per-timestep or per-episode basis, and use it to
estimate the payoff [11] of unlabelled episodes, with some appropriate weighting or uncertainty estimate
to account for lower confidence in estimated vs known reward [117].

6.2.1.3 Active Reward Learning

With active reward learning, one trains a model in an active learning manner to predict the reward from
the state on either a per-timestep or per-episode basis, and use it to estimate the payoff of unlabelled
episodes [117], e.g. identifying salient events in the environment and querying human operators as to the
respective rewards [11].

6.2.1.4 Unsupervised Value Iteration

The technique of unsupervised value iteration may also be useful for scalable oversight. This involves
using the observed transitions within unlabeled episodes to make more accurate Bellman updates in the
context of a markov decision process [11].

6.2.1.5 Distant Supervision

Distant supervision in this context would be where humans provide some useful information about the
system’s decisions in the aggregate, or some noisy hints about the correct evaluations [11], like some
techniques within weakly supervised learning [290, 135, 393, 183, 167, 294] Broad paradigms like reward
engineering [88, 129] should also be considered in such a context to avert unhelpful instrumental incentives.

6.2.1.6 Hierarchical Reinforcement Learning

Hierarchical reinforcement learning offers a compelling technique for scaling delegation and oversight [11].
In this approach, there is a high-level RL agent, operating on abstract strategies, receiving likely-sparse
reward signal feedback from above it, and having it delegate to lower-level more object level RL agents,
for which it in turn generates synthetic reward signals, with many such levels [122, 244]. This formulation
is somewhat of a microcosm of AI safety overall, since subagents can do things that don’t necessarily
serve its higher-level agent’s goals [11, 257]. Such a structure may prove amenable to fostering situational
awareness via risk-conscious skills, which would strengthen its utility for the present task [289].
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6.2.1.7 Trusted Policy Oversight

Given a trusted policy, an agent can be made to explore only regions of state space that the policy strongly
believes can be recovered from [11]. See section Bounded Exploration which uses a very similar technique
specifically for safe exploration.

6.2.1.8 Cooperative Inverse Reinforcement Learner

The cooperative inverse reinforcement learning paradigm views the human-agent interaction as a coop-
erative game where both players attempt to find a joint policy that maximizes the human’s secret value
function [185, 437]. An outstanding challenge in this is to determine which portions of the ascertained
value function are instrumental, which are incidental, and which exhibit deep values. See section Coop-
erative Inverse Reinforcement Learner where this algorithm is used for more upfront value or preference
learning.

6.2.1.9 Human Judgement Learner

Techniques for learning human judgement are another approach to scalable control [437]. While some
are less scalable or more narrow [237], others aim to be highly scalable [82]. In the latter case, one
might train a reinforcement learning system to take actions that a human would rate highly by using a
framework where the system has to learn the “human judgment” reward function, and where training
data is produced by having a more advanced agent, e.g. a human, evaluate the learner’s actions [86],
approval-directed agents [78].

In ambitious conceptions of this, the goal is not just to form a good generative model of observed
human judgement, but the much more difficult goal of using the trajectories of past learning to extrapolate
forward to what the subject would decide given more time, education, and resources. See section Inverse
Reinforcement Learning, a practicable technique for apprenticeship learning and determining human goals.
See section Scaling Judgement Learning where a comparable technique is used for upfront value learning.

6.2.1.10 Informed Oversight

In oversight scenarios like the approval directed agent paradigm, the more powerful and well-informed
principal agent will need to find ways to incentivize good behavior from the weaker and more ignorant
agent that the more capable one would like to teach [92, 223]. Underexplored as yet are the problems of
informed oversight that come about when the system is highly capable and might be able to manipulate
its human supervisors or circumvent their efforts [437]. Determining what sort of guarantees one should
want in order to justify confidence in their ability to assess a system’s behavior in the first place would be
useful to provide next research steps on the theoretical side [437]. See section Monitoring which provides
key ways for the operator to be informed. See section Transparent Reinforcement Learners as sufficiently
transparent RL might open practical approaches to informed oversight [92]. See section Value Alignment
which, to scale, may require viable informed oversight [92].

6.2.2 Controlling Another Algorithm

As time progresses and agents become sufficiently advanced, automatic generation of subagents may well
occur. While trivial with simple fixed algorithms, there is currently extremely little research on the general
case of how one algorithm can control another one with potentially independent optimization criteria [112].
See section Open Source Game Theory which addresses this issue in the case that source code of both
agents are known by both.

6.2.3 Capability Distillation

Being able to distill or crystalize the capabilities, knowledge [202], and skills [228] of one system into
another more compact one, or a less capable one, at least to within some tolerance, would be useful for
many of the approaches to oversight and control. For applicability to long-term AI safety, being able
to learn these in the face of much scarcer feedback containing possible inconsistencies would seem to be
necessary and requires more research [83].
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6.2.4 Rich Understanding of Human Commands

Though some advanced approaches aim to put the full burden of diambiguating humans on the intelligent
agent, methods for effective, robust, meaningful, and minimally ambiguous communication between hu-
mans and machines [115] may well be necessary. It has been argued, however, that agents with different
world models and only symbolic serialization between face very high computational complexity when stat-
ically attempting exhaustive disambiguation [211, 216]. Also see relevant sections Increasing Contextual
Awareness and Implicit Human Concepts.

6.2.5 Monitoring

Monitoring, such as transparency or interpretability, can, to a degree [273], help humans or other agents
understand what an agent is doing, why it is doing it, and what alternatives it has considered [302]. See
section Symbolic-Subsymbolic Integration because conceptual structure can be used to improve machine
learning interpretability [100].

6.2.5.1 Transparency of Whiteboxes

Whitebox algorithms, which are amenable to introspection, each have respective methods by which al-
gorithms can be more transparent to introspection and understandability [437], including more explicitly
interpretable models such as bayesian networks, causal networks, and rule lists, [153, 337, 461, 72, 219,
261, 108, 157] and even less typically-interpretable algorithms such as graphical models and dimension-
ality reduction [454, 280, 100]. Techniques like listing an agent’s most likely next actions, [443, 262]
summarizing its upcoming possible future states, [34] interactive behavior introspection and exploration,
[238, 395, 243, 239, 251, 64] and generating narrative explanations of decisions [53] all support this type
of transparency, and can potentially be used in conjunction. The understanding and visualization of
representations learned by neural networks is both a large need for the increasingly popular and powerful
deep learning techniques and has a growing set of proposed solutions [397, 484, 301, 283, 171, 230, 241,
320, 312, 70]. When trying to understand complex deep learning systems, generating visualizations or
exemplars that accentuate particular parts of a the deep network that are particularly relevant for the
classification [397, 484] can be useful.

6.2.5.1.1 Transparent Reinforcement Learners Techniques for analyzing and reporting on the
models and policies of agents learned through reinforcement learning [483, 44] will have growing import
as reinforcement learning becomes more widespread. See section Informed Oversight as transparent RL
may help a lot with this core control problem [93].

6.2.5.2 Interpretability of Blackboxes

Blackbox interpretability is qualitatively different from whitebox transparency in that individual black-
box decisions are by definition inscrutible. The reporting or visualization of how decisions would have
been different given different variations of the inputs, or reporting which of the input’s features were
most important in making a decision, allows an operator some understanding [450, 437] of models in a
coarse-grain manner. One can also define coarse abstractions of neural networks that can be more easily
verified to satisfy safety constraints [349]. Methods for explaining classifications that finds a sparse linear
approximation to the local decision boundary of a given black-box ML system [448, 352, 291] may also be
useful. Similarly, some techniques can report the gradient in the input of the classification judgment, [33]
which can be used for exploratory heatmap visualizations of expected behavior. Metrics for reporting the
influence of various inputs on the output of a black-box ML system [119, 356, 450] might be the simplest
way to report on why blackbox or proprietary algorithms have reached particular decisions. For deeper
explanations, one may consider training systems to output both an answer, such as an action, and a report
intended to help the operator evaluate that answer [93].

6.2.5.3 Adversarial Transparency

When systems are made transparent, or at least seemingly interpretable, novel security issues can arise.
The objective function or the explanatory function may become gameable [165]. See section Adversarial
ML as adversaries may take advantage of transparency to exacerbate such challenges. See section Open
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Source Game Theory because radical transparency in the contexts of creating trustable subagents or
successors, or of control of one algorithm by another, can actually lead to much better outcomes for all
parties.

6.2.5.4 Visualization and Situational Awareness

An understanding of the context and other salient operational information is key for a human operator
monitoring the state of an AI. Methods to provide such situational awareness as completely and efficiently
as possible would aid monitoring significantly. Situational awareness includes the broader context as
the AI sees it, a representation of the environment, auto-selected salient factors for decision making and
their recent and projected values, characterizations of risk sensitivity, and the top reasons for both recent
decisions and upcoming decisions [259].

6.2.5.5 Detailed Audit Trails

To provide avenues for tracking and understanding of automated decisions retrospectively, protected and
detailed logging mechanisms comparable to the black box of an aircraft are an option. Making such audit
trails effective would require improving techniques to identify, prioritize, filter, summarize, retain, protect,
organize, and make easily-consumable information about everything an agent encounters, infers, deduces,
or decides [347].

6.2.5.6 Report Sufficiency

Quite a high volume of sensory and other data, computations involving processing intermediate values,
and decisions of all sizes, will be present in any but the most trivial of agents. Specialized techniques are
therefore required for determining the proper or sufficient amount of information to report to a human
for them to be adequately informed but not overwhelmed. In the context of reporting on judgement,
explaining the major factors that went into the decision and what would have to have been different
for a different decision [219] might qualify, but the optimal level of detail will likely vary by application
or context. The question arises as to the appropriate circumstances in which to produce a maximally
informative report even when such an interpretable report necessarily impinges the accuracy or reliability
of decisions made [93]. The agent would ideally determine the salience, risk, or uncertainty of a situation
or a decision and modulate its introspection, logging, and reporting volume upward during times when
those are elevated; furthermore, it could also modulate where, based on similar factors and operator
expectations, on the pareto frontier between accuracy and interpretability to be [437]. When the report
itself is interactive, such as via a dialogue, there is less uncertainty about sufficiency because humans can
drill down for more detail where needed [339], so long as it has been logged in depth internally.

6.2.5.7 Causal Accounting

Automated reports that attempt to explain events often report on the correlations or covariances among
different factors or features. Methods for disentangling correlation from causation, however, can clarify
AI-generated explanations. When world models are too small or inadequately structured, it may not
be possible. Work on generalizing the bounds in which one can isolate the effects of an action may
be useful in wider use of such techniques [391]. See section Causal Identification, which addresses causal
disentanglement for purposes of the agent’s understanding, but which can also be leveraged for monitoring
by operators.

7 Conclusion

In summary, success in the quest for artificial intelligence has the potential to bring unprecedented benefits
to humanity, and it is therefore worthwhile to research how to maximize these benefits while avoiding
potential pitfalls. This document has given numerous examples of such research, aimed at ensuring that
AI remains robust and beneficial and aligned with human interests. Much of this research is early on and
calls for further work. There are also likely to be many more topics and techniques needed for AI safety
that have yet to be discovered.
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[29] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Dover Publications, 2013.

[30] James Babcock, János Kramár, and Roman Yampolskiy. “The AGI Containment Problem”. In: Ar-
tificial General Intelligence: 9th International Conference, AGI 2016, New York, NY, USA, July 16-
19, 2016, Proceedings. Ed. by Bas Steunebrink, Pei Wang, and Ben Goertzel. Cham: Springer Inter-
national Publishing, 2016, pp. 53–63. isbn: 978-3-319-41649-6. doi: 10.1007/978-3-319-41649-6_
6. url: https://pdfs.semanticscholar.org/d7a4/adb20a879e89fc12600c84dff0cb69fd7d58.
pdf.

[31] Joscha Bach. Discussion of generalized pathologies of intelligent agents and psychological and or-
ganizational psychological analogues. Discussion. 2016.

[32] Joscha Bach. Modeling Emotion as an Interaction between Motivation and Modulated Cognition.
2011. url: http://www.lorentzcenter.nl/lc/web/2011/464/presentations/Bach.pdf.

[33] David Baehrens et al. “How to explain individual classification decisions”. In: The Journal of
Machine Learning Research 11 (2010), pp. 1803–1831. url: http://is.tuebingen.mpg.de/

fileadmin/user_upload/files/publications/baehrens10a_%5B0%5D.pdf.

43

http://www.jstor.org/stable/2236607
http://www.jstor.org/stable/2236607
https://people.eecs.berkeley.edu/~russell/papers/aaai02-alisp.pdf
https://people.eecs.berkeley.edu/~russell/papers/aaai02-alisp.pdf
https://dl.dropboxusercontent.com/u/23843264/Permanent/Using_Oracles.pdf
https://dl.dropboxusercontent.com/u/23843264/Permanent/Using_Oracles.pdf
http://aaai.org/ocs/index.php/WS/AAAIW15/paper/viewFile/10183/10126
http://dx.doi.org/10.1007/978-3-642-31674-6_25
https://www.fhi.ox.ac.uk/wp-content/uploads/Risks-and-Mitigation-Strategies-for-Oracle-AI.pdf
https://www.fhi.ox.ac.uk/wp-content/uploads/Risks-and-Mitigation-Strategies-for-Oracle-AI.pdf
http://www.fhi.ox.ac.uk/utility-indifference.pdf
www.nickbostrom.com/papers/oracle.pdf
www.nickbostrom.com/papers/oracle.pdf
https://dl.dropboxusercontent.com/u/23843264/Permanent/towards-interactive-inverse-reinforcement-learning.pdf
https://dl.dropboxusercontent.com/u/23843264/Permanent/towards-interactive-inverse-reinforcement-learning.pdf
https://dl.dropboxusercontent.com/u/23843264/Permanent/towards-interactive-inverse-reinforcement-learning.pdf
https://dl.dropboxusercontent.com/u/23843264/Permanent/Reduced_impact_S+B.pdf
http://www.peterasaro.org/writing/Asaro%20IRIE.pdf
www.sfb588.uni-karlsruhe.de/Module/Publications/publications/Asfour2008a.pdf
www.sfb588.uni-karlsruhe.de/Module/Publications/publications/Asfour2008a.pdf
http://dx.doi.org/10.1007/s11948-016-9783-0
http://dx.doi.org/10.1007/s11948-016-9783-0
http://link.springer.com/content/pdf/10.1007%2Fs11948-016-9783-0.pdf
http://link.springer.com/content/pdf/10.1007%2Fs11948-016-9783-0.pdf
http://dx.doi.org/10.1007/978-3-319-41649-6_6
http://dx.doi.org/10.1007/978-3-319-41649-6_6
https://pdfs.semanticscholar.org/d7a4/adb20a879e89fc12600c84dff0cb69fd7d58.pdf
https://pdfs.semanticscholar.org/d7a4/adb20a879e89fc12600c84dff0cb69fd7d58.pdf
http://www.lorentzcenter.nl/lc/web/2011/464/presentations/Bach.pdf
http://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/baehrens10a_%5B0%5D.pdf
http://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/baehrens10a_%5B0%5D.pdf


[34] Aijun Bai, Siddharth Srivastava, and Stuart J. Russell. “Markovian State and Action Abstractions
for MDPs via Hierarchical Monte Carlo Tree Search”. In: Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July
2016. 2016, pp. 3029–3039. url: http://www.ijcai.org/Abstract/16/430.

[35] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Representation and Mind
Series). The MIT Press, 2008. isbn: 026202649X, 9780262026499.

[36] Chris L. Baker, Rebecca R. Saxe, and Joshua B. Tenenbaum. “Bayesian theory of mind: Model-
ing joint belief-desire attribution”. In: CogSci 2011 Proceedings. 2011. url: http://aiweb.cs.
washington.edu/research/projects/aiweb/media/papers/cogsci2011.pdf.

[37] Chris L. Baker, Rebecca Saxe, and Joshua B. Tenenbaum. “Action understanding as inverse plan-
ning”. In: Cognition 113.3 (2009). Reinforcement learning and higher cognition, pp. 329–349. issn:
0010-0277. doi: http : / / dx . doi . org / 10 . 1016 / j . cognition . 2009 . 07 . 005. url: http :

//web.mit.edu/clbaker/www/papers/cognition2009.pdf.

[38] Krishnakumar Balasubramanian, Pinar Donmez, and Guy Lebanon. “Unsupervised Supervised
Learning II: Margin-Based Classification Without Labels”. In: J. Mach. Learn. Res. 12 (Nov. 2011),
pp. 3119–3145. issn: 1532-4435. url: http://www.jmlr.org/papers/volume12/balasubramanian11a/
balasubramanian11a.pdf.
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[62] Léon Bottou et al. Counterfactual Reasoning and Learning Systems. Tech. rep. arXiv:1209.2355,
2012. url: http://leon.bottou.org/papers/tr-bottou-2012.

[63] Craig Boutilier. “A POMDP Formulation of Preference Elicitation Problems”. In: Eighteenth Na-
tional Conference on Artificial Intelligence. Edmonton, Alberta, Canada: American Association
for Artificial Intelligence, 2002, pp. 239–246. isbn: 0-262-51129-0. url: https://www.aaai.org/
Papers/AAAI/2002/AAAI02-037.pdf.

[64] Daniel J. Brooks et al. “Towards State Summarization for Autonomous Robots”. In: Dialog with
Robots, Papers from the 2010 AAAI Fall Symposium, Arlington, Virginia, USA, November 11-13,
2010. AAAI, 2010. url: http://www.aaai.org/ocs/index.php/FSS/FSS10/paper/viewFile/
2223/2749.

[65] Achim D Brucker and Uwe Sodan. “Deploying static application security testing on a large scale”.
In: GI Sicherheit 2014. Vol. 228. GI. 2014, pp. 91–101. url: https : / / www . brucker . ch /

bibliography/download/2014/brucker.ea-sast-expierences-2014.pdf.

[66] Yuriy Brun and Michael D Ernst. “Finding latent code errors via machine learning over program
executions”. In: Proceedings of the 26th International Conference on Software Engineering. IEEE
Computer Society. 2004, pp. 480–490. url: https://homes.cs.washington.edu/~mernst/pubs/
machlearn-errors-icse2004.pdf.

45

http://dx.doi.org/10.1145/1553374.1553381
http://doi.acm.org/10.1145/1553374.1553381
http://doi.acm.org/10.1145/1553374.1553381
http://papers.nips.cc/paper/6182-search-improves-label-for-active-learning.pdf
http://papers.nips.cc/paper/6182-search-improves-label-for-active-learning.pdf
http://www.cs.columbia.edu/~orb/papers/justification_automl_2014.pdf
http://www.cs.columbia.edu/~orb/papers/justification_automl_2014.pdf
http://dx.doi.org/10.1109/CEC.2002.1004522
https://people.duke.edu/~ng46/topics/evolved-radio.pdf
https://people.duke.edu/~ng46/topics/evolved-radio.pdf
http://arxiv.org/abs/1105.3821
http://jmlr.org/proceedings/papers/v37/blundell15.pdf
http://jmlr.org/proceedings/papers/v37/blundell15.pdf
www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/11273/10648
www.aaai.org/ocs/index.php/SOCS/SOCS15/paper/view/11273/10648
http://www.nickbostrom.com/superintelligentwill.pdf
http://www.nickbostrom.com/superintelligentwill.pdf
http://www.nickbostrom.com/ethics/infinite.pdf
http://icml.cc/2015/invited/LeonBottouICML2015.pdf
http://icml.cc/2015/invited/LeonBottouICML2015.pdf
http://leon.bottou.org/papers/tr-bottou-2012
https://www.aaai.org/Papers/AAAI/2002/AAAI02-037.pdf
https://www.aaai.org/Papers/AAAI/2002/AAAI02-037.pdf
http://www.aaai.org/ocs/index.php/FSS/FSS10/paper/viewFile/2223/2749
http://www.aaai.org/ocs/index.php/FSS/FSS10/paper/viewFile/2223/2749
https://www.brucker.ch/bibliography/download/2014/brucker.ea-sast-expierences-2014.pdf
https://www.brucker.ch/bibliography/download/2014/brucker.ea-sast-expierences-2014.pdf
https://homes.cs.washington.edu/~mernst/pubs/machlearn-errors-icse2004.pdf
https://homes.cs.washington.edu/~mernst/pubs/machlearn-errors-icse2004.pdf


[67] Miles Brundage. “Limitations and risks of machine ethics”. In: Journal of Experimental Theoretical
Artificial Intelligence 26.3 (2014), pp. 355–372. doi: 10.1080/0952813X.2014.895108. eprint:
http://dx.doi.org/10.1080/0952813X.2014.895108. url: http://www.milesbrundage.com/
uploads/2/1/6/8/21681226/limitations_and_risks_of_machine_ethics.pdf.

[68] Lucian Busoniu, Robert Babuvska, and Bart De Schutter. “A Comprehensive Survey of Multia-
gent Reinforcement Learning”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 38.2 (2008), pp. 156–172. issn: 1094-6977. doi: 10.1109/TSMCC.2007.
913919. url: http://repository.tudelft.nl/assets/uuid:4c7d3b49-06fc-400c-923e-
3903b8d230fe/busoniu2008.pdf.

[69] Tamara Carleton, William Cockayne, and Larry Leifer. An Exploratory Study about the Role of Am-
biguity During Complex Problem Solving. 2007. url: https://www.aaai.org/Papers/Symposia/
Spring/2008/SS-08-03/SS08-03-002.pdf.

[70] Giovanni Sirio Carmantini et al. “A modular architecture for transparent computation in Recurrent
Neural Networks”. In: CoRR abs/1609.01926 (2016). url: http://arxiv.org/abs/1609.01926.
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