Working towards human-level intelligence...

Dileep George

Vicarious
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It Is possible to act on the world without modeling it

Old brain
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Dinosaurs appeared Dinosaurs became extinct Homo sapiens appeared

Jan 1st Sep 21st Dec 31st

Old brain was very successful. Dinosaurs had walnut-sized brains
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Old-brain style (model-free) learning

Trained Function
A

Black box with limited capability for thinking,
Imagination, creativity or planning



Many modern methods are still like the old brain

e Extremely large number of training examples
* |nscrutable, black box classifiers

* Not generative. Models lack explanatory
DOWEr




Deep Neural Networks are Easily Fooled:
High Confidence Predictions for Unrecognizable Images

Anh Nguyen Jason Yosinski Jeff Clune
University of Wyoming Cornell University University of Wyoming

anguyen8f@uwyo.edu sinski@cs.cornell.edu jeffclunefuwyo.edu
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Pernaps, the brain can tell us more about how to
build truly intelligent machines
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Assumptions Learning efficiency Generality



sponges, jellyfish, flatworm carliest humanids

fish amphibians mammaliaforms

-600 -450 -300 -160

reptiles birds non-human primates

old brain new brain



This ‘'magical architecture’ Is :

General enoug
iIke vision, aud

N to solve multiple problems

tion, somatosensory etc.

Sut specific enough to learn efficiently.

(This also implies that the same set of architectural
assumptions work well for multiple domains)



Your brain is not very good at recognizing Q
codes




Neural nets

Flat RBMs Conv-nets Neo-Cortex Domain specific

architectures

|_ess structure More structure



Complex cells (Feature pooling)

ubel & Wiesel

Simple Cells (Feature detection)




RECEPTIVE FIELDS, BINOCULAR INTERACTION
AND FUNCTIONAL ARCHITECTURE IN
THE CAT’S VISUAL CORTEX

By D. H. HUBEL anxp T. N. WIESEL

From the Neurophysiolojy Laboratory, Department of Pharmacology
Harvard Medical School, Boston, Massachusetts, U.S.A.

(Recewved 31 July 1961)

Neuroscience has had many more advances since 1961.
Can’t we use that”?
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How can we decipher
INnformation-processing principles
from the brain®
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Neocortex
Source of assumptions/
constraints

PROBABILISTIC GRAPHICAL MODELS
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Computational Framework

Understand why neocortex

does what it does to design
algorithms

Physics of World’s Data
To find correspondence
with neocortex properties
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Olbserved hierarchy
IN the cortex

Hierarchical Efficiency and re-use.
structure of data
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Spikes
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Slue brain project




PROBABILISTIC GRAPHICAL MODELS

PRINCIPLES AND TECHNIQUES

Machine learning, statistics



Srain corporation




< vicarious

New-pbrain research questions

e Hierarchy + Feedback + Temporal
Learning & Inference

* Scene understanding
e Sensori-motor integration
o (Concept learning

e | anguage understanding






ow we solved CA

PTG

JAYS



We stuck to new-brain methods:

- Small amounts of training data
Trained on clean examples
rained only on positive examples
- Unsupervised training




Few training examples

< vicarious

Interpolation of millions of training images
VS

Extrapolation from few examples



Solves All Variations
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Our algorithm produces very detailed segmentation



even when the contours are occluded
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Scene parsing

1st (closest)
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Systems with imagination..



< vicarious

What is this picture”



< vicarious

It is the picture of a bear climbing a tree. Can you see the bear?



< vicarious

Imaginations from our system!
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Why is imagination important for AGI?
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Kite Glider



Tunnel

Major breakthroughs in A.l will need some
wind-tunnel style research



When?



Will we solve the fundamental research problems in N years?

N <=5 No way

5<N<=10 Small possibility

10 < N <= 20 > 50%



Increase in brain size G
during human evolution s
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About intelligence explosion...
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e Data Iimit

e |ntervention limit
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* Data limit

o Super-human A.l will encounter limits of available data

* Limit on recursive improvement

* (Going over the same data again and again does not increase the
information in the data. (Data Processing Inequality)

* Natural dynamics of data generation
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Suppose super-human A.l was created before we had
any knowledge about how gravity worked and how
earth moved around the sun.

How long will it take for the A.l to discover that it takes
the earth 365 days to go around the sun”

The dynamics of the world imposes limits on how fast
data can be acquired.
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