Verification / Security / Containment

Ramana Kumar
Beneficial AGI 2019 Workshop

ﬁ DeepMind

Verification

What roles does verification play in developing Beneficial AGI?

Containment (aka Boxing) Correctness & Security

Formal —\| Correct & Secure

Rest of world Specifications |~—17| Implementations

Formal Proofs & Correctness-
by-Construction

e Uses: experiments on Proto-AGil, e Uses: Better Computing
and as a fallback. Infrastructure, AGI Containment
e Not a complete solution to control. e + nascent area: verification of

learned/learning systems

éb DeepMind Verification & Containment — RAMANA
KUMAR

Formalisation Gaps

What is Formal Verification and what does it get us?

What we want the system to do
oo DR) (S e I et

specification gaps

o
Formal specification

Formal results checked by an
Interactive Theorem Proving system

Formal model of the implementation
°

modelling gaps and bugs

ol Sl e S e 5
- What the real system does

@ DeepMind Verification & Containment — RAMANA
KUMAR

Verification Down to Hardware

What is the state of the art in reducing modelling gaps?

e Formal machine-checked proofs in a foundational system

e Limited assumptions on final theorem:
O Semantics of circuits in Verilog (hardware description language).
Assume the board behaves as specified.

e Eliminate need to trust:
o compilers, linkers, operating systems, abstract models of the application
(e.g. control flow graph), shared semantics between verification
frameworks

6 DeepMind Verification & Containment — RAMANA
KUMAR

Research Updates

Two Results from 2018:
1. Counterfactual Oracle Box in x86 Machine Code
2. Verified Compilation on Verified Hardware

Counterfactual Oracle Box

What would it take to build an oracle Al we can rely on?

e Why Oracle AI?

o Contain impact of Al. Only impact = answers to questions.
o Observation: answers can affect the world

m system hacks (answer breaks infrastructure)

m mind hacks (answer tricks/tempts its readers)
o Problem: incentives to affect the world via answers.

e Counterfactual Oracle Al (Armstrong): fix the incentives

o | Only provide reward when answer is erased. '~ T e
o | No reward when answer may affect the world. systempare apt for

verification.

@ DeepMind Verification & Containment — RAMANA
KUMAR

Toy Task and Requirements

A Concrete Example

Oracle Task: factorise semiprimes (given n, return p x g = n)
Box Requirements:

e Implement the Counterfactual Oracle reward scheme
o Select erasure event with some probability

o Check answer and deliver reward on erasure (do not reveal answer)
o Print answer and deliver zero reward on non-erasure

e Protect against Al influence on the world except for well-
formatted answers to the task question
e (Extras: Run only once, Reset/shutdown Al after run, ...)

@ DeepMind Verification & Containment — RAMANA
KUMAR

Box Implementation

Example of a High-Level Formal Specification
cobox_output query_string answer_string random_char _opt =

case (parse_num query string, parse_pair answer_string, random char _opt) of
| (_, _, NONE) => ("Error: no random char", 0)
| (, NONE,) => ("Error: could not parse answer", 0)
| (NONE, ,) => ("Error: could not parse query", 0)
| (SOME query _num, SOME (p,q), SOME c) =>
if ORD ¢ < 128
then (concat[toString p; " "; toString q], 0)
else ("(answer erased)", if p * @ = query_num then 1 else 0)

Results:

e Have pushed the above spec through the CakeML pipeline.
e The final implementation is in x86 machine code.
e The final theorem is about the machine code implementation.

@ DeepMind Verification & Containment — RAMANA
KUMAR

Compilation to a Verified Processor

Proof-of-concept comprehensive correctness theorem

e The previous result stops at verified machine code
o Still trusted: that the code is loaded correctly and the logical model of
machine code semantics correctly describes the machine’s behaviour.

e \We can do better by targeting a verified CPU

o Proof of concept: Silver ISA and processor implementation

e Large demo: Verified Compilation on the Verified CPU

o General purpose compiler: this demo shows that the method scales

6 DeepMind Verification & Containment — RAMANA
KUMAR

Trusted Computing Base

Under what assumptions does correctness hold?

[Formal Requirements]

Trust replaced with proof:

[Executable Spec]

e Human code
[Human Code] e Compiler & assembler
: e Runtime (gc, gmp, etc.)
[R%mtln?e] e Linker/loader
[Libraries) [Machine } e CPU
 OtherApps Code J still trusted:

[Devices] L Sperating } e Verilog Synthesis tools (Xilinx)
System e External memory device
{ Hardware } e Formal Requirements

@ DeepMind Verification & Containment — RAMANA
KUMAR

Technical Detalls

How we achieved formal verification down to hardware

Formal Verification to Hardware

formal spec
e.g., words — sorted(words)
“‘words of a random list"—
“a list of random words”

programming +

; F C
proving L2

executable spec
functions in logic
e.g., insert x (y::l) =
if x <y then x::y::l
else ...

proof-producing

. C
synthesis | : -

source code
in CakeML
e.g., funinsert x (y:il) =
if x <y then x::y::l
else ...

@ DeepMind

How does it work?

verified syscalls
in ag32
read/write/get_arg/...

machine code
in ag32
e.g., Oxda 0x80 0x12 0x08 ...

F T I3IC
verified
compilation
FV + 03 ¢

}_

proof-producing

circuit design
in logic

hardware synthesis | "V J
) 2
Silver CPU
external in Verilog HDL
RAM, unverified
interrupt | synthesis
handler FPGA
Zynq board

Main result: + @

Verification & Containment — RAMANA
KUMAR

Summary & Outlook

Where to from here?

Takeaway message

It is feasible, assuming only hardware correctness, to formally verify the
correctness of complex but well-specified computer systems.

Note: although possible, this is very far from typical software development.

Future directions

e What can we do absent formal specifications? Can Al help create them?

e Relatedly: how can we verify learning and learned systems?

e \What other aspects of systems are difficult to formally specify/verify? (apart
from learning, concurrency and interoperability are tricky)

e Can Al help in verification of computer systems (including Al systems)?

6 DeepMind Verification & Containment — RAMANA
KUMAR

