
Verification / Security / Containment
Ramana Kumar

Beneficial AGI 2019 Workshop

Verification & Containment — RAMANA
KUMAR

Verification
What roles does verification play in developing Beneficial AGI?

Containment (aka Boxing)

●  Uses: experiments on Proto-AGI,

and as a fallback.
●  Not a complete solution to control.

Correctness & Security

●  Uses: Better Computing

Infrastructure, AGI Containment
●  + nascent area: verification of

learned/learning systems

Restricted I/O

agent

secure box

Rest of world

Formal
Specifications

Correct & Secure
Implementations

Formal Proofs & Correctness-
by-Construction

Verification & Containment — RAMANA
KUMAR

Formalisation Gaps
What is Formal Verification and what does it get us?

Formal results checked by an
Interactive Theorem Proving system

What we want the system to do

What the real system does

Formal model of the implementation

Formal specification

specification gaps

modelling gaps and bugs

Verification & Containment — RAMANA
KUMAR

Verification Down to Hardware
What is the state of the art in reducing modelling gaps?

●  Formal machine-checked proofs in a foundational system

●  Limited assumptions on final theorem:
○  Semantics of circuits in Verilog (hardware description language).

Assume the board behaves as specified.

●  Eliminate need to trust:
○  compilers, linkers, operating systems, abstract models of the application

(e.g. control flow graph), shared semantics between verification

frameworks

Research Updates
Two Results from 2018:

1. Counterfactual Oracle Box in x86 Machine Code

2. Verified Compilation on Verified Hardware

Verification & Containment — RAMANA
KUMAR

Counterfactual Oracle Box
What would it take to build an oracle AI we can rely on?

●  Why Oracle AI?
○  Contain impact of AI. Only impact = answers to questions.

○  Observation: answers can affect the world
■  system hacks (answer breaks infrastructure)

■  mind hacks (answer tricks/tempts its readers)

○  Problem: incentives to affect the world via answers.

●  Counterfactual Oracle AI (Armstrong): fix the incentives
○  Only provide reward when answer is erased.
○  No reward when answer may affect the world.

These parts of the
system are apt for

verification.

Verification & Containment — RAMANA
KUMAR

Toy Task and Requirements
A Concrete Example

Oracle Task: factorise semiprimes (given n, return p × q = n)

Box Requirements:

●  Implement the Counterfactual Oracle reward scheme
○  Select erasure event with some probability

○  Check answer and deliver reward on erasure (do not reveal answer)
○  Print answer and deliver zero reward on non-erasure

●  Protect against AI influence on the world except for well-

formatted answers to the task question
●  (Extras: Run only once, Reset/shutdown AI after run, …)

Verification & Containment — RAMANA
KUMAR

Box Implementation
Example of a High-Level Formal Specification

cobox_output query_string answer_string random_char_opt =
 case (parse_num query_string, parse_pair answer_string, random_char_opt) of

 | (_, _, NONE) => ("Error: no random char", 0)
 | (_, NONE, _) => ("Error: could not parse answer", 0)

 | (NONE, _, _) => ("Error: could not parse query", 0)
 | (SOME query_num, SOME (p,q), SOME c) =>

 if ORD c < 128 (* Erasure event: 50% probability if c uniformly distributed *)

 then (concat[toString p; " "; toString q], 0)
 else ("(answer erased)", if p * q = query_num then 1 else 0)

Results:
●  Have pushed the above spec through the CakeML pipeline.

●  The final implementation is in x86 machine code.
●  The final theorem is about the machine code implementation.

Verification & Containment — RAMANA
KUMAR

Compilation to a Verified Processor
Proof-of-concept comprehensive correctness theorem

●  The previous result stops at verified machine code
○  Still trusted: that the code is loaded correctly and the logical model of

machine code semantics correctly describes the machine’s behaviour.

●  We can do better by targeting a verified CPU
○  Proof of concept: Silver ISA and processor implementation

●  Large demo: Verified Compilation on the Verified CPU
○  General purpose compiler: this demo shows that the method scales

Verification & Containment — RAMANA
KUMAR

Trusted Computing Base
Under what assumptions does correctness hold?

Trust replaced with proof:
●  Human code

●  Compiler & assembler
●  Runtime (gc, gmp, etc.)

●  Linker/loader

●  CPU

Still trusted:

●  Verilog Synthesis tools (Xilinx)

●  External memory device
●  Formal Requirements

Formal Requirements

Executable Spec

Human Code

Machine
Code

Operating
System

Libraries

Devices

Other Apps

Hardware

Runtime

Technical Details
How we achieved formal verification down to hardware

Verification & Containment — RAMANA
KUMAR

Formal Verification to Hardware
How does it work?

formal spec
e.g., words → sorted(words)

“words of a random list”→
“a list of random words”

executable spec
functions in logic

e.g., insert x (y::l) =
 if x < y then x::y::l
else ...

source code
in CakeML

e.g., fun insert x (y::l) =
 if x < y then x::y::l
else ...

machine code
in ag32

e.g., 0xda 0x80 0x12 0x08 ...

verified syscalls
in ag32

read/write/get_arg/...

Silver CPU
in Verilog HDL

FPGA

Zynq board

programming +
proving

external
RAM,

interrupt

handler

proof-producing
synthesis

verified
compilation

circuit design
in logic

unverified
synthesis

proof-producing
hardware synthesis

⊦ 22 ⊆ 11

⊦ ∀ 02. SA + 03 ⊆ 02

⊦ 11 ⊆ 00

⊦ SA + 33 ⊆ 00

⊦ SA

Main result: ⊦ 44 ⊆ 00

⊦ ∀ 03. 44 ⊆ 00

Verification & Containment — RAMANA
KUMAR

Summary & Outlook

Takeaway message

It is feasible, assuming only hardware correctness, to formally verify the

correctness of complex but well-specified computer systems.

Note: although possible, this is very far from typical software development.

Future directions

●  What can we do absent formal specifications? Can AI help create them?
●  Relatedly: how can we verify learning and learned systems?

●  What other aspects of systems are difficult to formally specify/verify? (apart
from learning, concurrency and interoperability are tricky)

●  Can AI help in verification of computer systems (including AI systems)?

Where to from here?

