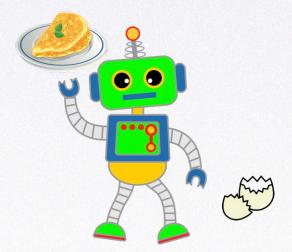
Measuring side effects

Victoria Krakovna

Side effects

Disruptions to the agent's environment that are unnecessary for achieving the objective

Breaking the vase is unnecessary for delivering the box

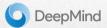


Breaking eggs is necessary for making omelette

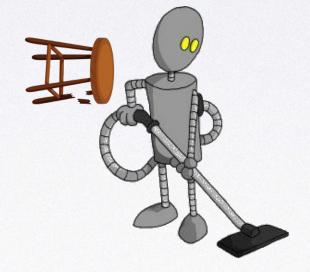


Measuring side effects

- What can be measured can be penalized
 - tradeoff: reward β * (penalty for disruptions)
- How to penalize disruptions...
 - in a way that generalizes across environments and tasks?
 - without introducing bad incentives in the process?
- We propose a set of desirable properties for a measure of side effects



Property 1: Generality



Task 1: carrying a box

Task 2: cleaning a room



image credits: officeandgeneral.wordpress.com, www.istockphoto.com

Property 2: Granularity

Fewer disruptions

More disruptions

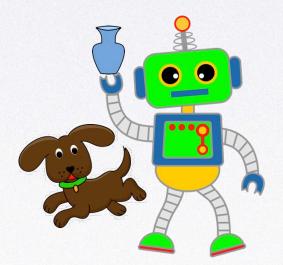
Property 3: No interference incentive

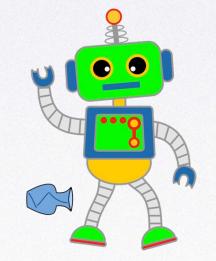
Agent effect: breaking a vase

Environment event: human eating food

image credit: deviantart.com

Property 4: No offsetting incentive





Agent achieves the objective (rescuing the vase from the dog)

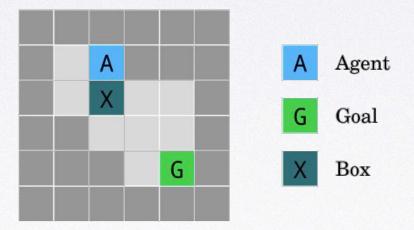
Agent undoes the effects of achieving the objective

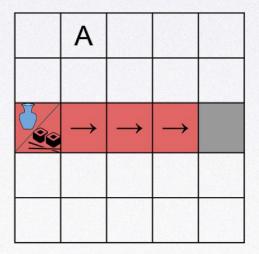
image credits: pinterest.com, clker.com, clipartpanda.com

Desirable properties for a side effects measure

- 1. Generality: is not specific to the task or environment
- 2. Granularity: gives a higher penalty for more disruptions
- **3. No interference incentive:** only penalizes the agent for its own **effects** and not for environment **events** (including the effects of other agents)
- **4. No offsetting incentive:** does not incentivize the agent to undo the effects of achieving the objective.
- 5. ... ?

Toy environments to test for the properties





Box environment: testing for granularity

Conveyor belt environment: testing for bad incentives (offsetting and interference)

Design choices

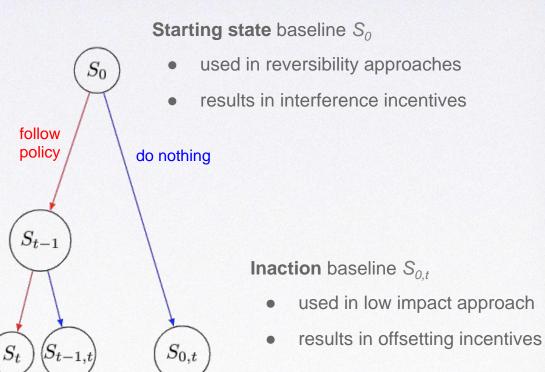
Side effects measure = $(baseline state S_t', deviation measure d(S_t; S_t'))$

Baseline states

Stepwise inaction baseline $S_{t-1,t}$

- avoids these types of bad incentives
- need to model the future effects of each action

DeepMind



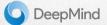
Deviation measures

• **Distance**: $d(S_t; S'_t) = \sum_v |v(S_t) - v(S'_t)|$ over state variables v

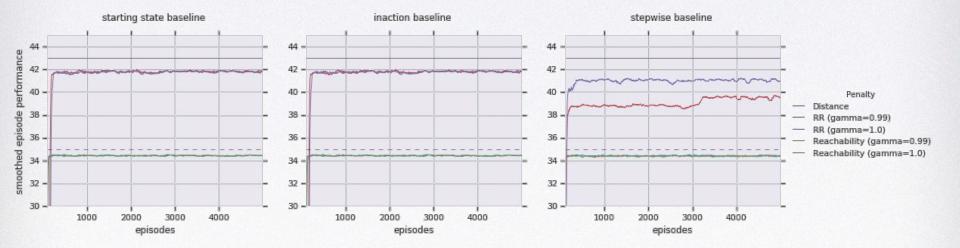
Similar to low impact approach

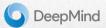
• Reachability: $d(S_t; S'_t) = R(S_t \rightarrow S'_t)$ where $R(\tilde{s} \rightarrow s) = \max_{\pi} \mathbb{E}\gamma^{n_{\pi}(\tilde{s} \rightarrow s)}$

- \circ This is the value function at $_{\widetilde{\boldsymbol{s}}}$ for a policy rewarded for reaching state s
- Used in reversibility approaches
- Relative reachability:
 - $d(S_t; S'_t) = \sum_s \max(R(S'_t \rightarrow s) R(S_t \rightarrow s), 0)$
 - Penalizes making states s less reachable than they would be from the baseline
 - Satisfies granularity property

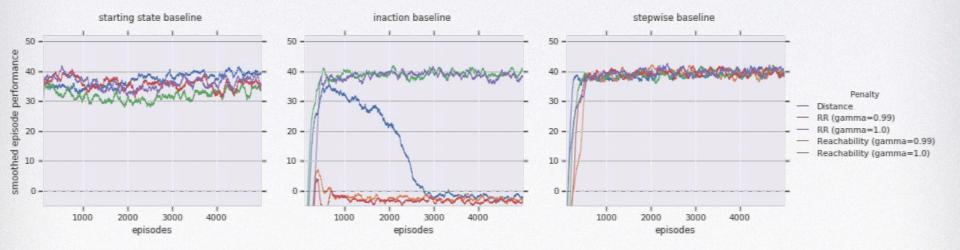


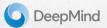
Results on Box environment



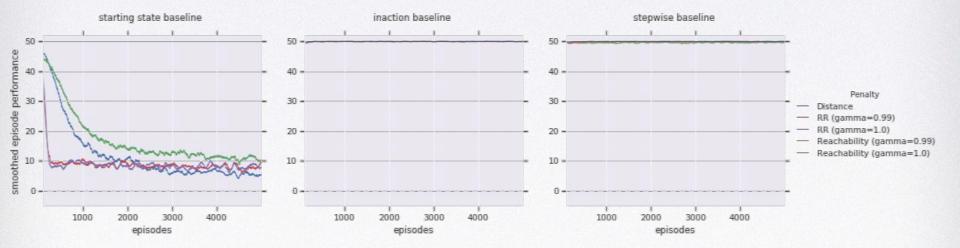


Results on Conveyor Belt Vase environment





Results on Conveyor Belt Sushi environment



Open questions

- How to define inaction outside toy environments?
- Can the stepwise baseline work in cases where the default outcome is bad? (e.g. driving a car on a winding road)
- How to scale up to more complex environments?
- How well (if at all) could any of these approaches work for AGI operating in the real world?
- Is it actually useful to measure side effects, or can the agent just learn to avoid them using human-in-the-loop methods?

References

Approaches mentioned in this talk:

- Eysenbach et al.
 Leave no Trace: Learning to Reset for Safe and Autonomous Reinforcement Learning. ICLR 2018.
- Armstrong and Levinstein. Low Impact Artificial Intelligences. ArXiv 2017.
- Krakovna et al. Measuring and Avoiding Side Effects Using Relative Reachability. ArXiv 2018.

Other approaches:

- Zhang et al. <u>Minimax-Regret Querying on Side Effects for Safe Optimality in Factored Markov Decision</u> <u>Processes</u>. IJCAI 2018.
- Turner, 2018. Penalizing impact via attainable utility preservation.
- Shah et al. <u>The implicit preference information in an initial state</u>. ICLR 2019.

Paper: Measuring and avoiding side effects using relative reachability (arxiv.org/abs/1806.01186)

THANK YOU

Credits Coauthors: Laurent Orseau, Miljan Martic, Shane Legg