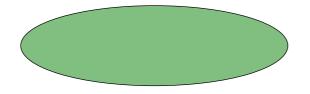
Alternative Specifications in Machine Learning

Percy Liang

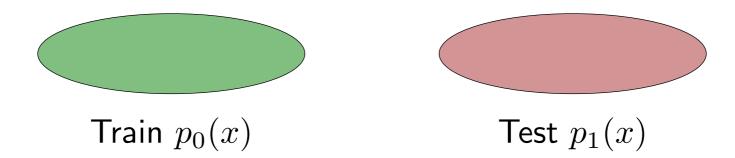
Jacob Steinhardt, Fereshte Khani

FLI Workshop

January 5, 2016

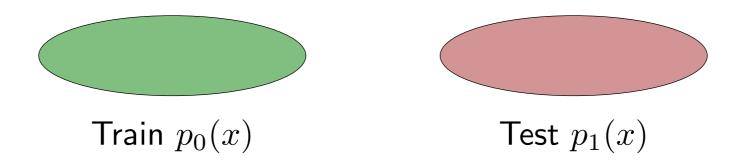


Train $p_0(x)$



Classic statistical learning theory:

training distribution = test distribution

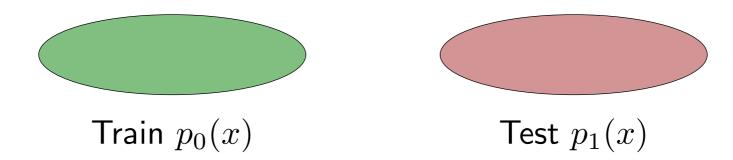


Classic statistical learning theory:

training distribution = test distribution

Relaxation: domain adaptation, mild adversaries

training distribution pprox test distribution



Classic statistical learning theory:

training distribution = test distribution

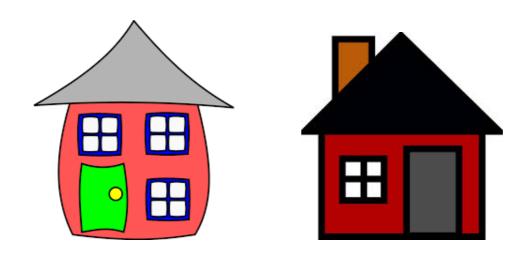
Relaxation: domain adaptation, mild adversaries

training distribution pprox test distribution

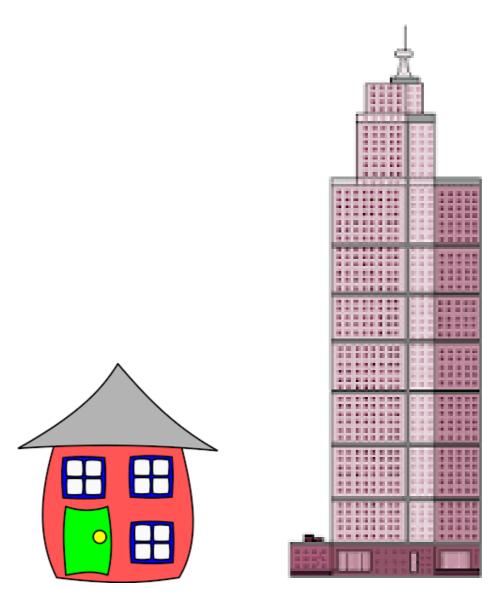
Issue:

doesn't address large changes (disasters, adversaries)

Changes and changes



Changes and changes



Long-term risks of AI: unknown unknowns

What's the right specification?

Specification: standard machine learning-

Input: training data

Output: model that does obtains low expected test error

Is **expected** test error enough?

What's the right specification?

Specification: standard machine learning-

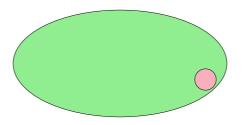
Input: training data

Output: model that does obtains low expected test error

Is **expected** test error enough?

Scenario:

- Err on 1% on instances
- Agents maximize, adversaries minimize, could drive us there!



New specification 1/2

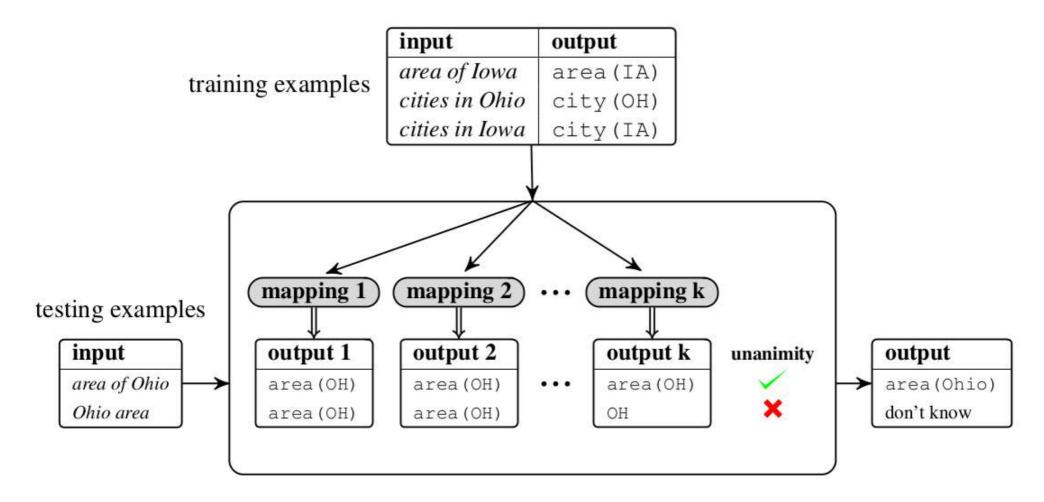
[ACL 2016]

Specification: selective prediction-

Input: training data

Output: model that outputs correct answer or "don't know"

Previous work: Chow (1970); Tortorella (2000); El-Yaniv & Wiener (2010); Balsubramani (2016)



Assumption: exists mapping with zero error

Models consistent with training data:

$$\mathcal{C} = \{ M \ge 0 : SM = T \}$$

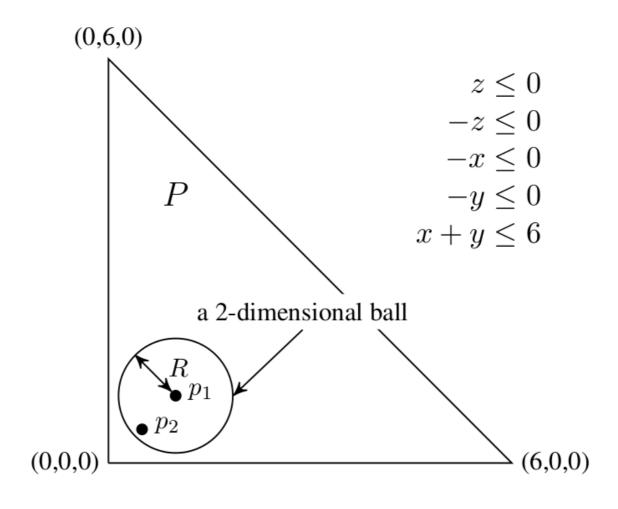
Models consistent with training data:

$$\mathcal{C} = \{ M \ge 0 : SM = T \}$$

Challenge:

Checking all consistent $M \in \mathcal{C}$ is slow...

Fast two point scheme

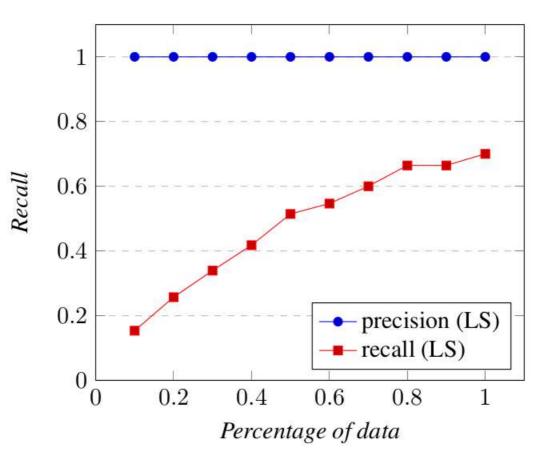


- Choose $M_1, M_2 \in \mathcal{C}$ randomly enough
- ullet Return "don't know" iff M_1 and M_2 disagree

Experimental results

• GeoQuery semantic parsing dataset (800 train, 280 test)

What is the population of Texas?



New specification 2/2

[NIPS 2016]

Specification: unsupervised risk estimation7

Input: unlabeled examples and model

Output: estimate of labeled accuracy

Previous work: Donmez et al. (2010); Dawid/Skene (1979); Zhang et al. (2014); Jaffe et al. (2015); Balasubramanian et al. (2011)

Is this possible?

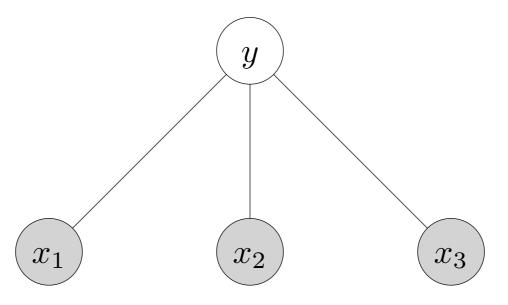
 $\mathsf{model}\ \theta$

? ? ? ? ? ? $x^{(1)}$ $x^{(2)}$ $x^{(3)}$ $x^{(4)}$ $x^{(5)}$

Compute $\mathbb{E}[\mathsf{loss}(x, \mathbf{y}; \theta)]$

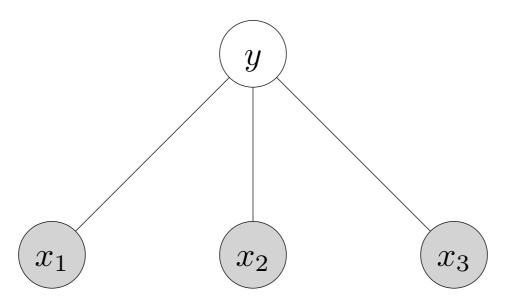
Assumptions

Conditional independence:



Assumptions

Conditional independence:

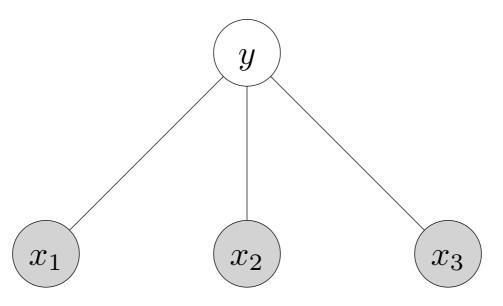


Loss function decomposes:

$$A(x;\theta) - f_1(x_1,y;\theta) - f_2(x_2,y;\theta) - f_3(x_3,y;\theta)$$

Assumptions

Conditional independence:

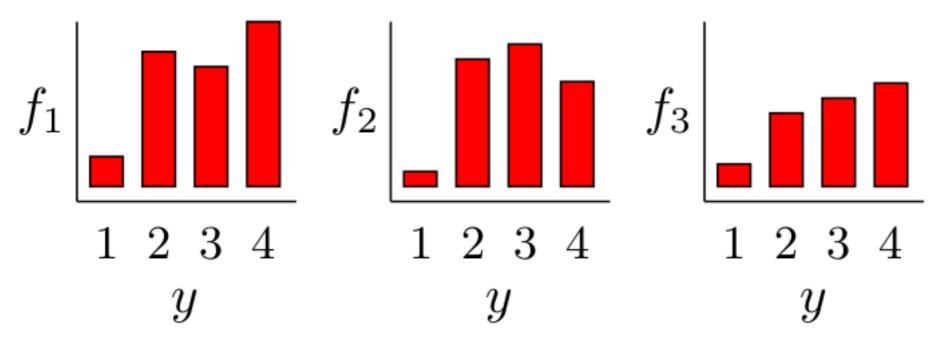


Loss function decomposes:

$$A(x;\theta) - f_1(x_1,y;\theta) - f_2(x_2,y;\theta) - f_3(x_3,y;\theta)$$

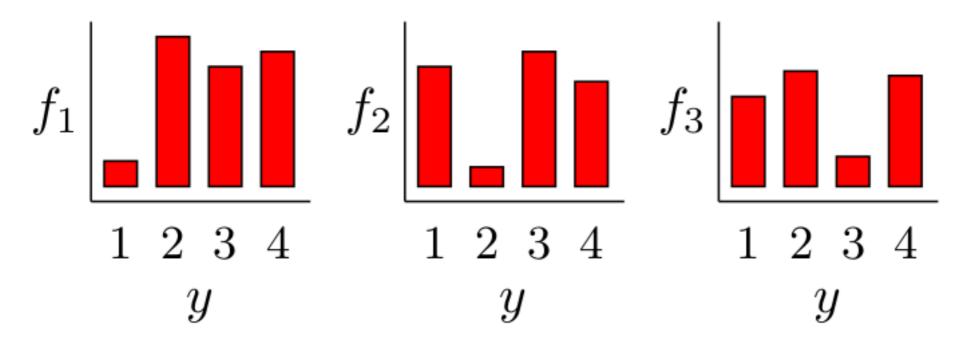
only conditional independence structure

Intuition

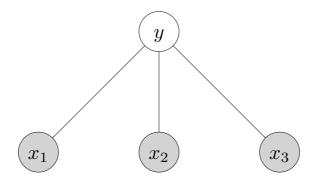


Three views agree \rightarrow (probably) low error

Intuition

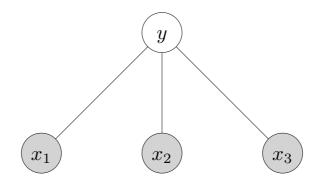


Three views disagree → high error



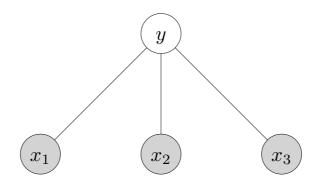
(k labels, views v = 1, 2, 3)

$$f_v(x,1)$$
 \cdots $f_v(x,k)$



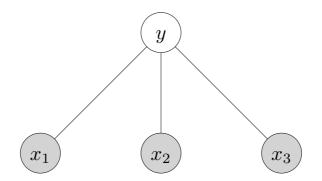
(k labels, views v = 1, 2, 3)

$$M_v = \begin{bmatrix} \mathbb{E}[f_v(x,1) \mid y=1] & \dots & \mathbb{E}[f_v(x,1) \mid y=k] \\ \dots & \dots & \dots \\ \mathbb{E}[f_v(x,k) \mid y=1] & \dots & \mathbb{E}[f_v(x,k) \mid y=k] \end{bmatrix}$$



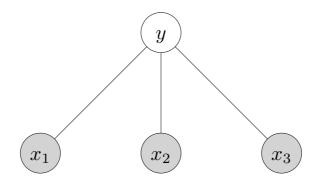
(k labels, views v = 1, 2, 3)

• Observe $\mathbb{E}[f_1(x,a)f_2(x,b)]$



(k labels, views v = 1, 2, 3)

• Observe $\mathbb{E}[f_1(x,a)f_2(x,b)f_3(x,c)]$



(k labels, views v = 1, 2, 3)

- Observe $\mathbb{E}[f_1(x,a)f_2(x,b)f_3(x,c)]$
- Perform tensor factorization to obtain

$$M_{vba} = \mathbb{E}[f_v(x,b) \mid y=a]$$



(k labels, views v = 1, 2, 3)

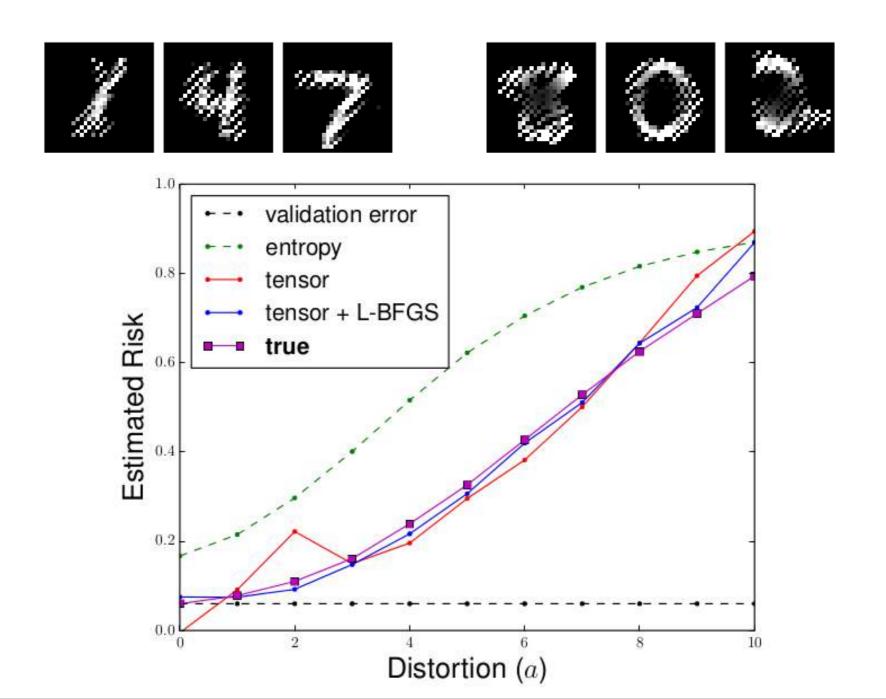
- Observe $\mathbb{E}[f_1(x,a)f_2(x,b)f_3(x,c)]$
- Perform tensor factorization to obtain

$$M_{vba} = \mathbb{E}[f_v(x,b) \mid y=a]$$

Use to compute risk (up to label permutation)

$$\mathbb{E}[A(x;\theta) - f_1(x_1,y;\theta) - f_2(x_2,y;\theta) - f_3(x_3,y;\theta)]$$

Results



Discussion

- ullet Maximize expected accuracy \Rightarrow selective prediction, unsupervised risk estimation
- Key question: Can we weaken the assumptions?

Code and data

worksheets.codalab.org

Collaborators

Fereshte Khani

Jacob Steinhardt

Thank you!