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Foundations of machine learning
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Train po(x) Test p1(x)
Classic statistical learning theory:

training distribution = test distribution
Relaxation: domain adaptation, mild adversaries

training distribution = test distribution
Issue:

doesn’t address large changes (disasters, adversaries)



Changes and changes




Changes and changes

Long-term risks of Al: unknown unknowns



What's the right specification?

Specification: standard machine learning

Input: training data

Output: model that does obtains low expected test error

Is expected test error enough?



What's the right specification?

Specification: standard machine learning

Input: training data
Output: model that does obtains low expected test error

Is expected test error enough?

Scenario:

e Err on 1% on instances

e Agents maximize, adversaries minimize, could drive us there!
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New specification 1/2

“

Fereshte Khani

[ACL 2016]

'_ Specification: selective prediction

Input: training data
Output: model that outputs correct answer or "don’t know"

Previous work: Chow (1970); Tortorella (2000); El-Yaniv & Wiener
(2010); Balsubramani (2016)



Unanimous prediction

training examples

[ input output
area of lowa area (IA)
cities in Ohio | city (OH)

| cities in lowa | city (IA)

l

testing examples

| input [ output1 | [ output2

area of Ohio —> area (OH) area (QH)

Ohio area area (OH) area (CH)
\

O\

(mapping 1) (mapping 2) ... (mappingk )

output k

.o area (OH)

OH

unanimity
g

&

output

area(Ohio)

don’t know

Assumption: exists mapping with zero error
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Unanimous prediction
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Unanimous prediction
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Challenge:
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Fast two point scheme
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a 2-dimensional ball

(0,0,0) (6,0,0)

e Choose M, M5 € C randomly enough

e Return "don't know" iff My and M, disagree



Experimental results

e GeoQuery semantic parsing dataset (800 train, 280 test)

What is the population of Texas?
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New specification 2/2

Jacob Steinhvardt

[NIPS 2016]

Specification: unsupervised risk estimationn

Input: unlabeled examples and model
Output: estimate of labeled accuracy

Previous work: Donmez et al. (2010); Dawid/Skene (1979); Zhang et
al. (2014); Jaffe et al. (2015); Balasubramanian et al. (2011)
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Is this possible?
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Conditional independence:

Assumptions
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Conditional independence:
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Loss function decomposes:
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Assumptions

Conditional independence:

G CY R €

Loss function decomposes:

A(z;0) — fi(z1,9;0) — fa(x2,y;0) — fa(xs, y; 0)

only conditional independence structure
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Three views agree — (probably) low error
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[Anandkumar et al., 2013]

Tensor factorization

0
YR CY R Y
(k labels, views v = 1,2, 3)
[ fo(z,1)7

fo(z, k)
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Tensor factorization

[Anandkumar et al., 2013]

(k labels, views v = 1,2, 3)

-E[fv(x71) |y = 1] E[fv(xvl) |y = k]-

E[fv(x7k> | Y= 1] E[fv(ka) ’ Y= k]
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[Anandkumar et al., 2013]

Tensor factorization

(K labels, views v = 1,2, 3)
e Observe E|fi(x,a)fo(x,b)]
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[Anandkumar et al., 2013]

Tensor factorization

(k labels, views v = 1,2, 3)
e Observe E|fi(z,a)f2(x,b) f3(x, )]

e Perform tensor factorization to obtain

Mypq = E[fU(ZE,b) ‘ Yy = a]
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[Anandkumar et al., 2013]

Tensor factorization

(k labels, views v = 1,2, 3)
e Observe E|fi(z,a)f2(x,b) f3(x, )]
e Perform tensor factorization to obtain
Mybe = E[fy(2,b) | y = a

e Use to compute risk (up to label permutation)

E[A(z;0) — fi(x1,y;0) — fa(z2,y;0) — f3(x3,9;0)]
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Results
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Discussion

e Maximize expected accuracy = selective prediction, unsupervised
risk estimation

e Key question: Can we weaken the assumptions?
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Code and data

Collaborators

Fereshte Khani Jagdb Stéihhardt
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Thank you!
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