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“clean up as much dirt as possible”

finds one patch of dirt, repeatedly 

picks it up and puts it down
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Program synthesis

tip([90,10])     = 15, 
tip([50,50,100]) = 30, 
…
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Programming by example is good for validity

- Write tests, get code for free (ish) 
- Reduce surface area for errors (e.g., syntax, type 

errors, mis-specification) 
- Enables thinking at high (domain-specific) level 

of abstraction 
- Empowers non-programmers to produce code

But.. PBE can be invalid
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Current synthesis systems interpret examples literally

Program synthesis
(programming by example)

Goal: more sophisticated (pragmatic) interpretation 
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Literal vs. pragmatic

“The one with glasses”

Literal: 0 0.5 0.5

Pragmatic: 0.9 0.10



Literal: 

search for programs that  

satisfy these examples

Pragmatic program synthesis

Pragmatic: 

search for programs that  

would make a person  

produce these examples

“aa”   ✔ 
“aaa”  ✔
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P(r | x) ∝ P(r) × P(x | r)

Generative models

Literal:

interpret regexes as 

PCFGs, do Earley parsing

Pragmatic:

need a model how people 

produce examples for 

particular regexes



So far

Collected data on how people generate examples

Work in progress on regex induction 

Collaboration: cognitive science research on 

language acquisition

Work on tooling: webppl 

Automated posterior visualization w/ static 

analysis (POPL ’17 PPS workshop) 

Automated inference?

P(r | x)



Initial experimental data
(plan to submit to CogSci ’17 but suggestions welcome)

Demo

Mechanical Turk subjects: mean age ~40, little to no 

programming experience

http://longouyang.github.io/ppbe-rx-measure/main.html
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p < 0.001 by permutation test
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Ahead

Collect more data, experiment with different stimuli, 

subjects, prompts, interfaces for example generation 

Build pragmatic synthesis system for regular 

expressions, string transformations 

Other domains: data transformation, data extraction, 

gesture, planning 

Work on efficient inference (PPLs? deep learning?) 

Analyze benefits of pragmatic versus literal synthesis




