
Valid programming with

pragmatic program synthesis

Long Ouyang

Validity: how to ensure that a system that meets its

formal requirements does not have unwanted behaviors

and consequences (“Did I build the right system?”)

Validity: how to ensure that a system that meets its

formal requirements does not have unwanted behaviors

and consequences (“Did I build the right system?”)

Validity: how to ensure that a system that meets its

formal requirements does not have unwanted behaviors

and consequences (“Did I build the right system?”)

“clean up as much dirt as possible”

Validity: how to ensure that a system that meets its

formal requirements does not have unwanted behaviors

and consequences (“Did I build the right system?”)

“clean up as much dirt as possible”

finds one patch of dirt, repeatedly

picks it up and puts it down

Bad: Imperative specification “how”

Bad: Imperative specification “how”

calculate a 15% tip
subtotal = 0
for i in items:
subtotal += price[i]
tip = 0.15 * subtotal

Bad: Imperative specification “how”

Better: declarative specification “what”

calculate a 15% tip
subtotal = 0
for i in items:
subtotal += price[i]
tip = 0.15 * subtotal

Bad: Imperative specification “how”

Better: declarative specification “what”

tip([90,10]) = 15,
tip([50,50,100]) = 30,
…

calculate a 15% tip
subtotal = 0
for i in items:
subtotal += price[i]
tip = 0.15 * subtotal

Program synthesis

tip([90,10]) = 15,
tip([50,50,100]) = 30,
…

(programming by example)

“a” ✔
“aa” ✔

Program synthesis
(programming by example)

“a” ✔
“aa” ✔

Program synthesis
(programming by example)

Programming by example is good for validity

- Write tests, get code for free (ish)
- Reduce surface area for errors (e.g., syntax, type

errors, mis-specification)
- Enables thinking at high (domain-specific) level

of abstraction
- Empowers non-programmers to produce code

But.. PBE can be invalid

“a” ✔
“aa” ✔

“aa” ✔
“aaa” ✔

Program synthesis
(programming by example)

“a” ✔
“aa” ✔

“aa” ✔
“aaa” ✔

Program synthesis
(programming by example)

“a” ✔
“aa” ✔

“aa” ✔
“aaa” ✔

Current synthesis systems interpret examples literally

Program synthesis
(programming by example)

“a” ✔
“aa” ✔

“aa” ✔
“aaa” ✔

Current synthesis systems interpret examples literally

Program synthesis
(programming by example)

Goal: more sophisticated (pragmatic) interpretation

Literal vs. pragmatic

Literal vs. pragmatic

“The one with glasses”

Literal vs. pragmatic

“The one with glasses”

Literal: 0 0.5 0.5

Literal vs. pragmatic

“The one with glasses”

Literal: 0 0.5 0.5

Pragmatic: 0.9 0.10

Literal:

search for programs that  

satisfy these examples

Pragmatic program synthesis

Pragmatic:

search for programs that  

would make a person  

produce these examples

“aa” ✔
“aaa” ✔

P(r | x) ∝ P(r) × P(x | r)

Generative models

P(r | x) ∝ P(r) × P(x | r)

Generative models

Literal:

interpret regexes as

PCFGs, do Earley parsing

P(r | x) ∝ P(r) × P(x | r)

Generative models

Literal:

interpret regexes as

PCFGs, do Earley parsing

Pragmatic:

need a model how people

produce examples for

particular regexes

So far

Collected data on how people generate examples

Work in progress on regex induction

Collaboration: cognitive science research on

language acquisition

Work on tooling: webppl

Automated posterior visualization w/ static

analysis (POPL ’17 PPS workshop)

Automated inference?

P(r | x)

Initial experimental data
(plan to submit to CogSci ’17 but suggestions welcome)

Demo

Mechanical Turk subjects: mean age ~40, little to no

programming experience

http://longouyang.github.io/ppbe-rx-measure/main.html

People give between 1 and 11 examples:

People give between 1 and 11 examples:
3a consonants−only delimiters zip−code

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

number of examples

fr
e
q

People give between 1 and 11 examples:

Examples are fairly balanced in polarity:

3a consonants−only delimiters zip−code

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

number of examples

fr
e
q

People give between 1 and 11 examples:

Examples are fairly balanced in polarity:

3a consonants−only delimiters zip−code

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

number of examples

fr
e
q

3a consonants−only delimiters zip−code

0 3 6 0 3 6 0 3 6 0 3 6

0

3

6

positive examples

#
 n

e
g
a
ti
v
e
 e

x
a
m

p
le

s

freq

1

2

3

4

5

6

7

Examples tend to be related  

e.g., [qwerty] and qwerty], 12521 and 125219

Examples tend to be related  

e.g., [qwerty] and qwerty], 12521 and 125219
(near miss)

Examples tend to be related  

e.g., [qwerty] and qwerty], 12521 and 125219

p < 0.001 by permutation test

(near miss)

Examples tend to be related  

e.g., [qwerty] and qwerty], 12521 and 125219

Rich sequencing structure

p < 0.001 by permutation test

(near miss)

Examples tend to be related  

e.g., [qwerty] and qwerty], 12521 and 125219

Rich sequencing structure

p < 0.001 by permutation test

2 3 4 5 6 7 8 9 10 11

3
a

c
o
n
s
o
n
a
n
ts
−
o
n
ly

d
e
lim

ite
rs

z
ip
−
c
o
d
e

3 6 9 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9 3 6 9

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

−2

−1

0

1

2

example.num

z
.l
e
n

polarity

negative

positive

(near miss)

Ahead

Collect more data, experiment with different stimuli,

subjects, prompts, interfaces for example generation

Build pragmatic synthesis system for regular

expressions, string transformations

Other domains: data transformation, data extraction,

gesture, planning

Work on efficient inference (PPLs? deep learning?)

Analyze benefits of pragmatic versus literal synthesis

