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“True” Learning to
Learn (L2L) is not just
transfer learning!
Even a simple
feedforward NN can
transfer-learn to learn
new images faster
through pre-training
on other image sets

True L2L is not just
about learning to
adjust a few hyper-
parameters such as
mutation rates in
evolution strategies
(e.g., Rechenberg &
Schwefel, 1960s)




Radical L2L is about
encoding the initial
learning algorithm in
a universal language
(e.g., on an RNN),
with primitives that
allow to modify the
code itself in arbitrary
computable fashion

Then surround this
self-referential, self-
modifying code by a
recursive framework
that ensures that
only “useful” self-
modifications are

executed or survive
(RSI)




J. Good (1965): informal
remarks on an intelligence
explosion through recursive
self-improvement (RSI) for

super-intelligences
My concrete

algorithms for RSI:
1987, 93, 94, 2003




J. Schmidhuber, 1987

My diploma thesis (1987):
first concrete design of
recursively self-improving Al

http://people.idsia.ch/~juergen/metalearner.html

R-learn & improve learning
algorithm itself, and also the
meta-learning algorithm, etc...




Genetic Programming recursively applied to itself, to obtain Meta-GP and Meta-Meta-GP
etc: J. Schmidhuber (1987). Evolutionary principles in self-referential learning. On learning
how to learn: The meta-meta-... hook. Diploma thesis, TU Munich




http://www.idsia.ch/~juergen/rn.html

LONG SHORT-TERM MEMORY

1997-2009. Since 2015 on your phone! Google, Microsoft, IBM, Apple, all use LSTM now
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Separation of Storage and Control for NNs: End-to-End Differentiable Fast Weights
(Schmidhuber, 1992) extending v.d. Malsburg’s non-differentiable dynamic links (1981)

RUSGREBE v (t)

SCHUELLE GEWICHTE

EINGABE x (t) : EINGABE x (t)




1993: More elegant
Hebb-inspired
addressing to go
from (#hidden) to
(#hidden)? temporal
variables: gradient-
based RNN learns
to control internal
end-to-end
differentiable
spotlights of
attention for fast
differentiable
memory rewrites —
again fast weights

Schmidhuber,
ICANN 1993:
Reducing the ratio
between learning
complexity and
number of time-
varying variables in
fully recurrent nets.

Similar to NIPS
2016 paper by
Ba, Hinton, Mnih,
Leibo, lonesco




2005:
Reinforcement-
Learning or
Evolving RNNs
with Fast Weights

Robot learns to
balance 1 or 2 poles
through 3D joint

"¢
Gomez & Schmidhuber:
Co-evolving recurrent
neurons learn deep
memory POMDPs.
GECCO 2005

http://www.idsia.ch/~juergen/evolution.html




1993: Gradient-
based meta-
RNNs that can
learn to run their
own weight
change
algorithm:

J. Schmidhuber.
A self-referential
weight matrix.
ICANN 1993

This was before LSTM. In 2001, however, Sepp Hochreiter taught a meta-LSTM to
learn a learning algorithm for quadratic functions that was faster than backprop




_ i E.g., Schmidhuber,
Success-story algorithm (SSA) for T Wierng: .

self-modifying code (since 1994) 28:105-130, 1997

R(t): Reward until time t. Stack of
past check points v,v,v, ... with
self-mods in between. SSA
undoes selfmods after v, that are
not followed by long-term reward
acceleration up until t (now):




INTERNAL STATE
ADDRESSES | 0 1 2 3 4 5 6 7 9 0 11 12
CONTENTS | 5321 | -44 | 810 | -2 [-3322| 5 7 3 139 | 2 237 | 6
INSTRUCTION POINTER
v PARAMETERS
PERCEPTIONS A
0= ADD(al, a2,a3) 0.001 |0.0014| 09 | 824 |0.001 |0.0014) 09 | 09
1 = MUL(al, a2, a3) 0.001 |0.0014| 0.04 | 061 | 0.001 |0.0014] 0.04 | 0.04
2 = SUB(al, a2, a3) 099 |0.0014| 001 [ 061 | 099 [0o0w| 001 | 0.0
3= IMPLEQ(al, a2, a3) 0.001 | 099 | 0.01 | 061 |0.001 | 099 | 0.01 | 0.01
4 = MOVEAGENT(al, a2) 0.001 |0.0014| 001 [ 07 |o.001 |0.0014f 001 | 001
EXTERNAL
5 = InvokeSSAQ 0.004 |0.0014| 0.01 | 061 | 0004 [00014| 001 | 001
o ENVIRONMENT
6= INCPROB(al, a2) 0.001 |0.0014| 0.01 | 061 | 0.001 | 0.0014] 0.01 | 0.00
7= DECPROB(al, a2) 0.001 |0.0014| 0.01 | 061 | 0.001 | 0.0014] 0.01 | 0.00

YVARIABIEPROBABILITY DISTRIBUTIONS




INTERNAL STATE
ADDRESSES | 0 1 9 3 4 5 6 7 3 9 w 1112
CONTENTS | 5321 | -44 | 810 | -2 [-3322| 35 7 3 o |-180 | 2 | 237 | ¢
INSTRUCTION POINTER
v PARAMETERS
PERCEPTIONS A
0= ADD(l, a2, a3) 0.001 |0.0014| 09 | 024 |0.001 |0.0014) 09 | 09
1 = MUL(], a2, a3) 0.001 |0.0014| 0.04 | 001 f0.001 |0.0014| 0.04 | 0.04
9= SUB{al, a2, a3) 099 |0.0014| 0.01 | 081 | 099 |o.004| 001 | 00
P o N -
3 = IMPLEQ(al, a2, a3) 0.001 | 099 | 0.01 | 061 fo.001 [ 099 | 0.01 | 0.00
4 = MOVEAGENT(al, a2) 0.001 |0.0014| 001 | 07 |0.001 [0.0014| 001 | 001
== D EXTERNAL
5 = InvakeSSAQ 0.004 |0.0014| 0.01 | 061 |0.004 |0.0014 001 | 0.01
o ENVIRONMENT
6= INCPROB(l, a2) 0.001 |0.0014| 0.01 | 061 |0.001 [0.0014| 001 | 001
7= DECPROB(al  a2) 0.001 |0.0014| 0.01 | 061 | 0.001 |0.0004| 0.01 | 0.00

YARIABIEPROBABILITY DISTRIBUTIONS




INTERNAL STATE
ADDRESSES | 0 1 9 3 4 5 6 7 3 9 w1112
CONTENTS | 5321 | -44 | 810 | -2 [-3322| 35 7 3 o |-189 | 2 | 237 | ¢
INSTRUCTION POINTER
v PARAMETERS
—— PERCEPTIONS A
0= ADDial,a2,a3) 0.001 [0.0014| 09 | 024 f0.001 [0004| 09 | 09
1 = MULal, a2, a3) 0.001 |0.0014| 0.04 | 061 |0.001 |0.0004| 0.04 | 0.0
9= SUB(al, a2, a3) 099 |0.0014| 001 | 081 | 099 |00014| 001 | 001
e \ -
3= JMPLEQ(al, a2, a3) 0.001 | 099 | 001 | 061 fo.001 | 099 | 0.01 | 0.01
4 = MOVEAGENT(al, a2) 0.001 |0.0014| 001 | 07 |o001 (00014 001 | 001
F=—; D EXTERNAL
5 = InvokeSSAD 0.004 |0.0014| 001 | 061 |0.004 00014 001 | 001
i ENVIRONMENT
6= INCPROB(al  a2) 0.001 |0.0014| 0.01 | 061 |0.001 |0.0014| 0.01 | 0.01
7= DECPROB(al, 22) 0.001 |0.0014| 0.01 | 061 |0.001 |0.0014| 0.01 | 0.01

YARIABIEPROBABILITY DISTRIBUTIONS




INTERNAL STATE
ADDRESSES ] 1 2 3 4 5 6 7 9 10 11 12
CONTENTS | 5321 | -44 | 810 [ -2 |-3322| 5 7 3 -139 2 237 6
INSTRUCTION POINTER
v PARAMETERS
: ) PERCEPTIONS ﬁ
0=ADD(al,a2,a3) 0.001 | 0.0014| 09 024 1 0.001 | 0.00141 09 09
1=MUL{al, a2,a3) 0.001 | 0.0014( 0.04 POGL 0001 | 0.0014) 0.04 | 0.04
2==5UBfal,a2,a3) 099 100014 0.01 POGT | 0599 |0.0014f 0.01 | 0.01
" W -
3=IMPLEQfal,a2,a3) 0.001 | 099 [ 0.01 P0G 0001 | 059 | 001 | 001
4=MOVEAGENTl, a2) 0.001 | 0.0014| 0.01 PO | 0.001 | 000141 0.01 | 0.01
' 3 EXTERNAL
5 = InvokeSSAQ 0.004 [0.0014| 0.01 OGS 0.004 | 0.0014) 0.01 | 0.01
Vs : : ENYIRONMENT
6= INCPROE(@al, a2} 0.001 | 0.0014( 001 P OGT 0001 |0.0014) 001 | 0.01
7=DECFPROBE(@al, a2} 0.001 | 0.0014( 0.01 (0L1H 0.001 {0.0014) 001 | 0.01

YARIABIEPROBABILITY DISTRIBUTIONS




INTERNAL STATE
ADDRESSES | 0 1 9 3 4 5 6 7 3 9 w1112
CONTENTS | 5321 | -44 | 810 | -2 [-3322| 35 7 3 o |-189 | 2 | 237 | ¢
INSTRUCTION POINTER
PARAMETERS
- PERCEPTIONS A
0= ADDfal, a2, a3) 0.001 [0.0014) 09 | 024 0001 |0.0014] 09 | 08
1 = MUL(], a2, a3) 0.001 |0.0014| 0.04 | 0.01 |0.001 |0.0014| 0.04 [ 0.0
2= SUB(al,a2,a3) 099 |0.0014| 0.01 | 0.01 | 099 |0.0014| 0.01 [ 061
- =
3= JMPLEQ(al, a2, a3) 0.001 | 099 | 0.01 | 0.01 |0.001 | 099 | 0.01 [ 0.6
4 = MOVEAGENT{al, 22) 0.001 {0.0014| 001 | 0.7 |0.001 |0.0014| 0.01 | 061
D EXTERNAL
5 = InvokeSSAD 0.004 |0.0014| 0.01 | 0.01 |0.004 |0.0014| 0.01 | 0.8
Vit ENVIRONMENT
6= INCPROB(al  a2) 0.001 |0.0014 0.01 | 0.01 |0.001 |0.0014| 0.01 | 061
7= DECPROB(al, 22) 0.001 |0.0014| 0.01 | 0.01 |0.001 |0.0014| 0.01 [ 0.1

YARIABIEPROBABILITY DISTRIBUTIONS




INTERNAL STATE
ADDRESSES | 0 1 9 3 4 5 6 7 3 9 w1112
CONTENTS | 5321 | -44 | 810 | -2 [-3322| 35 7 3 o |-189 | 2 | 237 | ¢
INSTRUCTION POINTER
PERCEPTIONS A
0= ADDial,a2,a3) 0.001 [0.0014| 09 | 024 |0001 |0.0014| 09 | 09
1 = MULal, a2, a3) 0.001 | 0.0014| 0.04 | 0.01 (0001 |00014| 004 | O.04
2= SUB(al,a2,a3) 099 |0.0014| 001 | 001 | 099 |00014| 001 | 000
=
3= JMPLEQ(al, a2, a3) 0.001 | 099 | 001 | 001 |0001 | 099 | 001 | 0.00
4 = MOVEAGENT{al, 22) 0.001 |0.0014| 001 | 0.7 [0001 |00014| 001 | Q.01
D EXTERNAL
5 = InvokeSSAD 0.004 |0.0014| 001 | 0.01
ENVIRONMENT
6= INCPROB(al, a2) 0.001 |0.0014| 0.01 | 0.01
7= DECPROB(al, 22) 0.001 |0.0014| 001 | 0.01

ELF-MODIFICATION
VARIABLE PROBABILITY DISTRIBUTIONS
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1997: Lifelong
meta-learning
with self-
modifying policies
and success-story
algorithm: 2
agents, 2 doors, 2
keys. 1st
southeast wins 9,
the other 3.
Through recursive
self-modifications
only: from
300,000 steps per
trial down to
5,000.




Kurt Godel, father of theoretical computer
science, exhibited the limits of math and
computation (1931) by creating a formula
that speaks about itself, claiming to be
unprovable by a computational theorem
prover: either formula is true but
unprovable, or math is flawed in an
algorithmic sense

Universal problem solver Godel machine
uses self reference trick in a new way




Godel Machine (2003):
agent-controlling program
that speaks about itself,
ready to rewrite itself in
arbitrary fashion once it
has found a proof that the
rewrite is useful, given a
user-defined utility function

goedelmachine.com
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Theoretically optimal
self-improver!




Initialize Godel Machine

by Marcus Hutter's |[2)§(|)/2
asymptotically fastest on my
method for all well- SNF
defined problems grant

A‘ik -

Given f:X—Y and x&X, search proofs to find
program q that provably computes f(z) for all
z&X within time bound t (z); spend most time
on f(x)-computing g Wl?h best current bound

n3+101000=n3+0(1)

Universal

Artificial Intelligence

As fast as fastest
f-computer, save
for factor 1+¢ and
f-specific const.
independent of x!




' Play not only solves but also continually
lems at the borderline between what's
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neural networks-based....
artificiatintelligence

THE DAWN OF Al




Datd Analytics

Deop Reinforcemen

Convolutional Noural Network

Oata Scionce

Reinforcement learning to park
Cooperation NNAISENSE - AUDI

L

Loearniy

Artificial Neural Network

@maisense




J. Schmidhuber. Evolutionary principles in self-referential learning, or on learning how
to learn: The meta-meta-... hook. Diploma thesis, TUM, 1987. (First concrete RSI.)

J. Schmidhuber. A self-referential weight matrix. ICANN 1993
J. Schmidhuber. On learning how to learn learning strategies. TR FKI-198-94, 1994,

J. Schmidhuber and J. Zhao and M. Wiering. Simple principles of metalearning. TR
IDSIA-69-96, 1996. (Based on 3.)

J. Schmidhuber, J. Zhao, N. Schraudolph. Reinforcement learning with self-modifying
policies. In Learning to learn, Kluwer, pages 293-309, 1997. (Based on 3.)

J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story
algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning
28:105-130, 1997. (Based on 3.)

J. Schmidhuber. Godel machines: Fully Self-Referential Optimal Universal Self-
Improvers. In Artificial General Intelligence, p. 119-226, 2006. (Based on TR of 2003.)

T. Schaul and J. Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.
More under http://people.idsia.ch/~juergen/metalearner.html
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Backtrack when

> t>PT

frozen codes

tapes of current tasks

p(1)

curently tested

prolongation:
while(x<y)call fo17

Afrozen

ip(1)

—ip(2)

—ip(3)

p(3)

p(2)

Super-deep program learner:
Optimal Ordered Problem Solver
OOPS (Schmidhuber, MLJ, 2004,
extending Levin’s universal
search, 1973)

Time-optimal incremental search
and algorithmic transfer learning
In program space

Branches of search tree are
program prefixes

Node-oriented backtracking
restores partially solved task sets
& modified memory components
on error or when Y t > PT




p(1)

tapes of current tasks

:

currently tested [

prolongation |

ip(1)

ip(2)

p(3)

ip(3)

/|Environ—
;[ ment

Ds[200]

Ds[1]
Dp

ds[200]

ds[87]

ds[83]

Hanoi peg 1

Hanoi peg 2

“-.._ |Hanoi peg3

| # return values
© | for data stack

ds[1]

dp=87

cs[200]

cs[17]

cs[1]

cp=17

fns[100]

fns[35]

fns[2]

fos[1]

fop=35

task #
guotcflag
pats[20]

pats[?]

p(2)

pats[1]

curp=2

patp

base pointer
to data stack

instruction

pointer ip(3)

| function 35:

# return values

# inputs

... |start address

- |current

probabilities:

numerator[nQ]

numerator[2]

numerator[1]

"...| denominator

61 primitive instructions operating
on stack-like and other internal
data structures. For example:

push1(), not(x), inc(x), add(x,y),
div(x,y), or(x,y), exch_stack(m,n),
push_prog(n), movstring(a,b,n),
delete(a,n), find(x), define
function(m,n), callfun(fn),
Jjumpif(val,address), quote(),
unquote(),
boost_probability(n,val) ....

Programs are integer sequences;
data and code look the same;
makes functional programming
easy




Towers of Hanoi: incremental solutions

 +1ms, n=1:  (movdisk)

* 1day, n=1,2: (c4c3cpncdby2c3by2exec)

« 3Jdays, n=1,2,3: (c3 dec boostq defnp ¢4 calltp ¢3 ¢5 calltp endnp)

* 4days:n=4,n=5, ..., n=30: by same double-recursive program
 Profits from 30 earlier context-free language tasks (1"2"): transfer learning
« 93,994,568,009 prefixes tested

« 345,450,362,522 instructions

e 6/8,634,413,962 time steps

* longest single run: 33 billion steps (5% of total time)! Much deeper than
recent memory-based “deep learners” ...

* top stack size for restoring storage: < 20,000




What the found Towers of Hanoi solver does:

* (c3 dec boostq defnp c4 calltp ¢3 ¢b calltp endnp)

 Prefix increases P of double-recursive procedure:
Hanoi(Source,Aux,Dest,n): IF n=0 exit; ELSE BEGIN
Hanoi(Source,Dest,Aux,n-1); move top disk from Aux to Dest;
Hanoi(Aux,Source,Dest,n-1); END

 Prefix boosts instructions of previoulsy frozen program, which happens to
be a previously learned solver of a context-free language (1"2"). This
rewrites search procedure itself: Benefits of metalearning!

«  Prefix probability 0.003; suffix probability 3*10%; total probability 910"
« Suffix probability without prefix execution: 4*10-4

» Thatis, Hanoi does profit from 1"2" experience and incremental learning
(OOPS excels at algorithmic transfer learning): speedup factor 1000




J.S.: IJCNN 1990, NIPS 1991: Reinforcement Learning
with Recurrent Controller & Recurrent World Model

Learning
and
planning
with
recurrent
networks




: Query :|
RNNAIlssance
2014-2015 ~ Reward _:t]
, Input B
On Learning to Actions |¢
Think: Algorithmic
Information Inform
Theory for Novel T
Combinations of Compress
: history by
Reinforcement C’s intrinsic reward for M’s predictive
Learning RNN- compression improvements W coding
based Controllers Store
(RNNAIs) and Lifelong history of actions/inputs/rewards
Recurrent Neural
World Models -
http://arxiv.org/abs/1511.09249
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